API Reference
tnh_scholar
TNH Scholar: Text Processing and Analysis Tools
TNH Scholar is an AI-driven project designed to explore, query, process and translate the teachings of Thich Nhat Hanh and other Plum Village Dharma Teachers. The project aims to create a resource for practitioners and scholars to deeply engage with mindfulness and spiritual wisdom through natural language processing and machine learning models.
Core Features
- Audio transcription and processing
- Multi-lingual text processing and translation
- Pattern-based text analysis
- OCR processing for historical documents
- CLI tools for batch processing
Package Structure
- tnh_scholar/
- CLI_tools/ - Command line interface tools
- audio_processing/ - Audio file handling and transcription
- journal_processing/ - Journal and publication processing
- ocr_processing/ - Optical character recognition tools
- openai_interface/ - OpenAI API integration
- text_processing/ - Core text processing utilities
- video_processing/ - Video file handling and transcription
- utils/ - Shared utility functions
- xml_processing/ - XML parsing and generation
Environment Configuration
- The package uses environment variables for configuration, including:
- TNH_PATTERN_DIR - Directory for text processing patterns
- OPENAI_API_KEY - OpenAI API authentication
- GOOGLE_VISION_KEY - Google Cloud Vision API key for OCR
CLI Tools
- audio-transcribe - Audio file transcription utility
- tnh-fab - Text processing and analysis toolkit
For more information, see: - Documentation: https://aaronksolomon.github.io/tnh-scholar/ - Source: https://github.com/aaronksolomon/tnh-scholar - Issues: https://github.com/aaronksolomon/tnh-scholar/issues
Dependencies
- Core: click, pydantic, openai, yt-dlp
- Optional: streamlit (GUI), spacy (NLP), google-cloud-vision (OCR)
TNH_CLI_TOOLS_DIR = TNH_ROOT_SRC_DIR / 'cli_tools'
module-attribute
TNH_CONFIG_DIR = Path.home() / '.config' / 'tnh-scholar'
module-attribute
TNH_DEFAULT_PATTERN_DIR = TNH_CONFIG_DIR / 'patterns'
module-attribute
TNH_LOG_DIR = TNH_CONFIG_DIR / 'logs'
module-attribute
TNH_PROJECT_ROOT_DIR = TNH_ROOT_SRC_DIR.resolve().parent.parent
module-attribute
TNH_ROOT_SRC_DIR = Path(__file__).resolve().parent
module-attribute
__version__ = '0.1.3'
module-attribute
ai_text_processing
ai_text_processing
DEFAULT_MIN_SECTION_COUNT = 3
module-attribute
DEFAULT_OPENAI_MODEL = 'gpt-4o'
module-attribute
DEFAULT_PARAGRAPH_FORMAT_PATTERN = 'default_xml_paragraph_format'
module-attribute
DEFAULT_PUNCTUATE_MODEL = 'gpt-4o'
module-attribute
DEFAULT_PUNCTUATE_PATTERN = 'default_punctuate'
module-attribute
DEFAULT_PUNCTUATE_STYLE = 'APA'
module-attribute
DEFAULT_REVIEW_COUNT = 5
module-attribute
DEFAULT_SECTION_PATTERN = 'default_section'
module-attribute
DEFAULT_SECTION_RANGE_VAR = 2
module-attribute
DEFAULT_SECTION_RESULT_MAX_SIZE = 4000
module-attribute
DEFAULT_SECTION_TOKEN_SIZE = 650
module-attribute
DEFAULT_TARGET_LANGUAGE = 'English'
module-attribute
DEFAULT_TRANSLATE_CONTEXT_LINES = 3
module-attribute
DEFAULT_TRANSLATE_SEGMENT_SIZE = 20
module-attribute
DEFAULT_TRANSLATE_STYLE = "'American Dharma Teaching'"
module-attribute
DEFAULT_TRANSLATION_PATTERN = 'default_line_translation'
module-attribute
DEFAULT_TRANSLATION_TARGET_TOKENS = 650
module-attribute
DEFAULT_XML_FORMAT_PATTERN = 'default_xml_format'
module-attribute
FOLLOWING_CONTEXT_MARKER = 'FOLLOWING_CONTEXT'
module-attribute
PRECEDING_CONTEXT_MARKER = 'PRECEDING_CONTEXT'
module-attribute
SECTION_SEGMENT_SIZE_WARNING_LIMIT = 5
module-attribute
TRANSCRIPT_SEGMENT_MARKER = 'TRANSCRIPT_SEGMENT'
module-attribute
logger = get_child_logger(__name__)
module-attribute
GeneralProcessor
Source code in src/tnh_scholar/ai_text_processing/ai_text_processing.py
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 |
|
pattern = pattern
instance-attribute
processor = processor
instance-attribute
review_count = review_count
instance-attribute
source_language = source_language
instance-attribute
__init__(processor, pattern, source_language=None, review_count=DEFAULT_REVIEW_COUNT)
Initialize punctuation generator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text_punctuator
|
Implementation of TextProcessor |
required | |
punctuate_pattern
|
Pattern object containing punctuation instructions |
required | |
section_count
|
Target number of sections |
required | |
review_count
|
int
|
Number of review passes |
DEFAULT_REVIEW_COUNT
|
Source code in src/tnh_scholar/ai_text_processing/ai_text_processing.py
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 |
|
process_text(text, source_language=None, template_dict=None)
process a text based on a pattern and source language.
Source code in src/tnh_scholar/ai_text_processing/ai_text_processing.py
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 |
|
LineTranslator
Translates text line by line while maintaining line numbers and context.
Source code in src/tnh_scholar/ai_text_processing/ai_text_processing.py
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 |
|
context_lines = context_lines
instance-attribute
pattern = pattern
instance-attribute
processor = processor
instance-attribute
review_count = review_count
instance-attribute
style = style
instance-attribute
__init__(processor, pattern, review_count=DEFAULT_REVIEW_COUNT, style=DEFAULT_TRANSLATE_STYLE, context_lines=DEFAULT_TRANSLATE_CONTEXT_LINES)
Initialize line translator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
processor
|
TextProcessor
|
Implementation of TextProcessor |
required |
pattern
|
Pattern
|
Pattern object containing translation instructions |
required |
review_count
|
int
|
Number of review passes |
DEFAULT_REVIEW_COUNT
|
style
|
str
|
Translation style to apply |
DEFAULT_TRANSLATE_STYLE
|
context_lines
|
int
|
Number of context lines to include before/after |
DEFAULT_TRANSLATE_CONTEXT_LINES
|
Source code in src/tnh_scholar/ai_text_processing/ai_text_processing.py
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
|
translate_segment(num_text, start_line, end_line, source_language=None, target_language=DEFAULT_TARGET_LANGUAGE, template_dict=None)
Translate a segment of text with context.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text
|
Full text to extract segment from |
required | |
start_line
|
int
|
Starting line number of segment |
required |
end_line
|
int
|
Ending line number of segment |
required |
source_language
|
Optional[str]
|
Source language code |
None
|
target_language
|
Optional[str]
|
Target language code (default: English) |
DEFAULT_TARGET_LANGUAGE
|
template_dict
|
Optional[Dict]
|
Optional additional template values |
None
|
Returns:
Type | Description |
---|---|
str
|
Translated text segment with line numbers preserved |
Source code in src/tnh_scholar/ai_text_processing/ai_text_processing.py
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
|
translate_text(text, segment_size=None, source_language=None, target_language=None, template_dict=None)
Translate entire text in segments while maintaining line continuity.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text
|
str
|
Text to translate |
required |
segment_size
|
Optional[int]
|
Number of lines per translation segment |
None
|
source_language
|
Optional[str]
|
Source language code |
None
|
target_language
|
Optional[str]
|
Target language code (default: English) |
None
|
template_dict
|
Optional[Dict]
|
Optional additional template values |
None
|
Returns:
Type | Description |
---|---|
str
|
Complete translated text with line numbers preserved |
Source code in src/tnh_scholar/ai_text_processing/ai_text_processing.py
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 |
|
LocalPatternManager
A simple singleton implementation of PatternManager that ensures only one instance is created and reused throughout the application lifecycle.
This class wraps the PatternManager to provide efficient pattern loading by maintaining a single reusable instance.
Attributes:
Name | Type | Description |
---|---|---|
_instance |
Optional[SingletonPatternManager]
|
The singleton instance |
_pattern_manager |
Optional[PatternManager]
|
The wrapped PatternManager instance |
Source code in src/tnh_scholar/ai_text_processing/ai_text_processing.py
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
|
pattern_manager
property
Lazy initialization of the PatternManager instance.
Returns:
Name | Type | Description |
---|---|---|
PatternManager |
PatternManager
|
The wrapped PatternManager instance |
Raises:
Type | Description |
---|---|
RuntimeError
|
If PATTERN_REPO is not properly configured |
__new__()
Create or return the singleton instance.
Returns:
Name | Type | Description |
---|---|---|
SingletonPatternManager |
LocalPatternManager
|
The singleton instance |
Source code in src/tnh_scholar/ai_text_processing/ai_text_processing.py
71 72 73 74 75 76 77 78 79 80 81 |
|
OpenAIProcessor
Bases: TextProcessor
OpenAI-based text processor implementation.
Source code in src/tnh_scholar/ai_text_processing/ai_text_processing.py
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
|
max_tokens = max_tokens
instance-attribute
model = model
instance-attribute
__init__(model=None, max_tokens=0)
Source code in src/tnh_scholar/ai_text_processing/ai_text_processing.py
152 153 154 155 156 |
|
process_text(text, instructions, response_format=None, max_tokens=0, **kwargs)
Process text using OpenAI API with optional structured output.
Source code in src/tnh_scholar/ai_text_processing/ai_text_processing.py
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
|
ProcessedSection
dataclass
Represents a processed section of text with its metadata.
Source code in src/tnh_scholar/ai_text_processing/ai_text_processing.py
111 112 113 114 115 116 117 118 119 120 |
|
end_line
instance-attribute
metadata = field(default_factory=dict)
class-attribute
instance-attribute
original_text
instance-attribute
processed_text
instance-attribute
start_line
instance-attribute
title
instance-attribute
__init__(title, original_text, processed_text, start_line, end_line, metadata=dict())
SectionParser
Generates structured section breakdowns of text content.
Source code in src/tnh_scholar/ai_text_processing/ai_text_processing.py
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 |
|
review_count = review_count
instance-attribute
section_pattern = section_pattern
instance-attribute
section_scanner = section_scanner
instance-attribute
__init__(section_scanner, section_pattern, review_count=DEFAULT_REVIEW_COUNT)
Initialize section generator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
processor
|
Implementation of TextProcessor |
required | |
pattern
|
Pattern object containing section generation instructions |
required | |
max_tokens
|
Maximum tokens for response |
required | |
section_count
|
Target number of sections |
required | |
review_count
|
int
|
Number of review passes |
DEFAULT_REVIEW_COUNT
|
Source code in src/tnh_scholar/ai_text_processing/ai_text_processing.py
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 |
|
find_sections(text, source_language=None, section_count_target=None, segment_size_target=None, template_dict=None)
Generate section breakdown of input text. The text must be split up by newlines.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text
|
str
|
Input text to process |
required |
source_language
|
Optional[str]
|
ISO 639-1 language code, or None for autodetection |
None
|
section_count_target
|
Optional[int]
|
the target for the number of sections to find |
None
|
segment_size_target
|
Optional[int]
|
the target for the number of lines per section (if section_count_target is specified, this value will be set to generate correct segments) |
None
|
template_dict
|
Optional[Dict[str, str]]
|
Optional additional template variables |
None
|
Returns:
Type | Description |
---|---|
TextObject
|
TextObject containing section breakdown |
Raises:
Type | Description |
---|---|
ValidationError
|
If response doesn't match TextObject schema |
Source code in src/tnh_scholar/ai_text_processing/ai_text_processing.py
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 |
|
SectionProcessor
Handles section-based XML text processing with configurable output handling.
Source code in src/tnh_scholar/ai_text_processing/ai_text_processing.py
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 |
|
pattern = pattern
instance-attribute
processor = processor
instance-attribute
template_dict = template_dict
instance-attribute
wrap_in_document = wrap_in_document
instance-attribute
__init__(processor, pattern, template_dict, wrap_in_document=True)
Initialize the XML section processor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
processor
|
TextProcessor
|
Implementation of TextProcessor to use |
required |
pattern
|
Pattern
|
Pattern object containing processing instructions |
required |
template_dict
|
Dict
|
Dictionary for template substitution |
required |
wrap_in_document
|
bool
|
Whether to wrap output in |
True
|
Source code in src/tnh_scholar/ai_text_processing/ai_text_processing.py
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 |
|
process_paragraphs(transcript)
Process transcript by paragraphs (as sections) where paragraphs are assumed to be given as newline separated.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
transcript
|
str
|
Text to process |
required |
Returns:
Type | Description |
---|---|
None
|
Generator of lines |
Yields:
Type | Description |
---|---|
str
|
Processed lines as strings |
Source code in src/tnh_scholar/ai_text_processing/ai_text_processing.py
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 |
|
process_sections(transcript, text_object)
Process transcript sections and yield results one section at a time.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
transcript
|
str
|
Text to process |
required |
text_object
|
TextObject
|
Object containing section definitions |
required |
Yields:
Name | Type | Description |
---|---|---|
ProcessedSection |
ProcessedSection
|
One processed section at a time, containing: - title: Section title (English or original language) - original_text: Raw text segment - processed_text: Processed text content - start_line: Starting line number - end_line: Ending line number |
Source code in src/tnh_scholar/ai_text_processing/ai_text_processing.py
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 |
|
TextProcessor
Bases: ABC
Abstract base class for text processors that can return Pydantic objects.
Source code in src/tnh_scholar/ai_text_processing/ai_text_processing.py
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
|
process_text(text, instructions, response_format=None, **kwargs)
abstractmethod
Process text according to instructions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text
|
str
|
Input text to process |
required |
instructions
|
str
|
Processing instructions |
required |
response_object
|
Optional Pydantic class for structured output |
required | |
**kwargs
|
Additional processing parameters |
{}
|
Returns:
Type | Description |
---|---|
Union[str, ResponseFormat]
|
Either string or Pydantic model instance based on response_model |
Source code in src/tnh_scholar/ai_text_processing/ai_text_processing.py
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
|
TextPunctuator
Source code in src/tnh_scholar/ai_text_processing/ai_text_processing.py
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
|
processor = processor
instance-attribute
punctuate_pattern = punctuate_pattern
instance-attribute
review_count = review_count
instance-attribute
source_language = source_language
instance-attribute
style_convention = style_convention
instance-attribute
__init__(processor, punctuate_pattern, source_language=None, review_count=DEFAULT_REVIEW_COUNT, style_convention=DEFAULT_PUNCTUATE_STYLE)
Initialize punctuation generator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text_punctuator
|
Implementation of TextProcessor |
required | |
punctuate_pattern
|
Pattern
|
Pattern object containing punctuation instructions |
required |
section_count
|
Target number of sections |
required | |
review_count
|
int
|
Number of review passes |
DEFAULT_REVIEW_COUNT
|
Source code in src/tnh_scholar/ai_text_processing/ai_text_processing.py
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
|
punctuate_text(text, source_language=None, template_dict=None)
punctuate a text based on a pattern and source language.
Source code in src/tnh_scholar/ai_text_processing/ai_text_processing.py
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
|
find_sections(text, source_language=None, section_pattern=None, section_model=None, max_tokens=DEFAULT_SECTION_RESULT_MAX_SIZE, section_count=None, review_count=DEFAULT_REVIEW_COUNT, template_dict=None)
High-level function for generating text sections.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text
|
str
|
Input text |
required |
source_language
|
Optional[str]
|
ISO 639-1 language code |
None
|
pattern
|
Optional custom pattern (uses default if None) |
required | |
model
|
Optional model identifier |
required | |
max_tokens
|
int
|
Maximum tokens for response |
DEFAULT_SECTION_RESULT_MAX_SIZE
|
section_count
|
Optional[int]
|
Target number of sections |
None
|
review_count
|
int
|
Number of review passes |
DEFAULT_REVIEW_COUNT
|
template_dict
|
Optional[Dict[str, str]]
|
Optional additional template variables |
None
|
Returns:
Type | Description |
---|---|
TextObject
|
TextObject containing section breakdown |
Source code in src/tnh_scholar/ai_text_processing/ai_text_processing.py
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 |
|
get_default_pattern(name)
Get a pattern by name using the singleton PatternManager.
This is a more efficient version that reuses a single PatternManager instance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
Name of the pattern to load |
required |
Returns:
Type | Description |
---|---|
Pattern
|
The loaded pattern |
Raises:
Type | Description |
---|---|
ValueError
|
If pattern name is invalid |
FileNotFoundError
|
If pattern file doesn't exist |
Source code in src/tnh_scholar/ai_text_processing/ai_text_processing.py
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 |
|
process_text(text, pattern, source_language=None, model=None, template_dict=None)
Source code in src/tnh_scholar/ai_text_processing/ai_text_processing.py
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 |
|
process_text_by_paragraphs(transcript, template_dict, pattern=None, model=None)
High-level function for processing text paragraphs. Assumes paragraphs are separated by newlines. Uses DEFAULT_XML_FORMAT_PATTERN as default pattern for text processing.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
transcript
|
str
|
Text to process |
required |
pattern
|
Optional[Pattern]
|
Pattern object containing processing instructions |
None
|
template_dict
|
Dict[str, str]
|
Dictionary for template substitution |
required |
model
|
Optional[str]
|
Optional model identifier for processor |
None
|
Returns:
Type | Description |
---|---|
None
|
Generator for ProcessedSections |
Source code in src/tnh_scholar/ai_text_processing/ai_text_processing.py
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 |
|
process_text_by_sections(transcript, text_object, template_dict, pattern=None, model=None)
High-level function for processing text sections with configurable output handling.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
transcript
|
str
|
Text to process |
required |
text_object
|
TextObject
|
Object containing section definitions |
required |
pattern
|
Optional[Pattern]
|
Pattern object containing processing instructions |
None
|
template_dict
|
Dict
|
Dictionary for template substitution |
required |
model
|
Optional[str]
|
Optional model identifier for processor |
None
|
Returns:
Type | Description |
---|---|
None
|
Generator for ProcessedSections |
Source code in src/tnh_scholar/ai_text_processing/ai_text_processing.py
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 |
|
punctuate_text(text, source_language=None, punctuate_pattern=None, punctuate_model=None, template_dict=None)
Source code in src/tnh_scholar/ai_text_processing/ai_text_processing.py
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
|
translate_text_by_lines(text, source_language=None, target_language=None, pattern=None, model=None, style=None, segment_size=None, context_lines=None, review_count=None, template_dict=None)
Source code in src/tnh_scholar/ai_text_processing/ai_text_processing.py
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 |
|
openai_process_interface
TOKEN_BUFFER = 500
module-attribute
logger = get_child_logger(__name__)
module-attribute
openai_process_text(text_input, process_instructions, model=None, response_format=None, batch=False, max_tokens=0)
postprocessing a transcription.
Source code in src/tnh_scholar/ai_text_processing/openai_process_interface.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
|
patterns
MarkdownStr = NewType('MarkdownStr', str)
module-attribute
SYSTEM_UPDATE_MESSAGE = 'PatternManager System Update:'
module-attribute
logger = get_child_logger(__name__)
module-attribute
ConcurrentAccessManager
Manages concurrent access to pattern files.
Provides: - File-level locking - Safe concurrent access patterns - Lock cleanup
Source code in src/tnh_scholar/ai_text_processing/patterns.py
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 |
|
lock_dir = Path(lock_dir)
instance-attribute
__init__(lock_dir)
Initialize access manager.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
lock_dir
|
Path
|
Directory for lock files |
required |
Source code in src/tnh_scholar/ai_text_processing/patterns.py
518 519 520 521 522 523 524 525 526 527 |
|
file_lock(file_path)
Context manager for safely accessing files.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
file_path
|
Path
|
Path to file to lock |
required |
Yields:
Type | Description |
---|---|
None when lock is acquired |
Raises:
Type | Description |
---|---|
RuntimeError
|
If file is already locked |
OSError
|
If lock file operations fail |
Source code in src/tnh_scholar/ai_text_processing/patterns.py
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 |
|
is_locked(file_path)
Check if a file is currently locked.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
file_path
|
Path
|
Path to file to check |
required |
Returns:
Name | Type | Description |
---|---|---|
bool |
bool
|
True if file is locked |
Source code in src/tnh_scholar/ai_text_processing/patterns.py
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 |
|
GitBackedRepository
Manages versioned storage of patterns using Git.
Provides basic Git operations while hiding complexity: - Automatic versioning of changes - Basic conflict resolution - History tracking
Source code in src/tnh_scholar/ai_text_processing/patterns.py
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 |
|
repo = Repo(repo_path)
instance-attribute
repo_path = repo_path
instance-attribute
__init__(repo_path)
Initialize or connect to Git repository.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
repo_path
|
Path
|
Path to repository directory |
required |
Raises:
Type | Description |
---|---|
GitCommandError
|
If Git operations fail |
Source code in src/tnh_scholar/ai_text_processing/patterns.py
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
|
display_history(file_path, max_versions=0)
Display history of changes for a file with diffs between versions.
Shows most recent changes first, limited to max_versions entries. For each change shows: - Commit info and date - Stats summary of changes - Detailed color diff with 2 lines of context
Parameters:
Name | Type | Description | Default |
---|---|---|---|
file_path
|
Path
|
Path to file in repository |
required |
max_versions
|
int
|
Maximum number of versions to show, if zero, shows all revisions. |
0
|
Example
repo.display_history(Path("patterns/format_dharma_talk.yaml")) Commit abc123def (2024-12-28 14:30:22): 1 file changed, 5 insertions(+), 2 deletions(-)
diff --git a/patterns/format_dharma_talk.yaml ... ...
Source code in src/tnh_scholar/ai_text_processing/patterns.py
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
|
update_file(file_path)
Stage and commit changes to a file in the Git repository.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
file_path
|
Path
|
Absolute or relative path to the file. |
required |
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
Commit hash if changes were made. |
Raises:
Type | Description |
---|---|
FileNotFoundError
|
If the file does not exist. |
ValueError
|
If the file is outside the repository. |
GitCommandError
|
If Git operations fail. |
Source code in src/tnh_scholar/ai_text_processing/patterns.py
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
|
Pattern
Base Pattern class for version-controlled template patterns.
Patterns contain: - Instructions: The main pattern instructions as a Jinja2 template. Note: Instructions are intended to be saved in markdown format in a .md file. - Template fields: Default values for template variables - Metadata: Name and identifier information
Version control is handled externally through Git, not in the pattern itself. Pattern identity is determined by the combination of identifiers.
Attributes:
Name | Type | Description |
---|---|---|
name |
str
|
The name of the pattern |
instructions |
str
|
The Jinja2 template string for this pattern |
default_template_fields |
Dict[str, str]
|
Default values for template variables |
_allow_empty_vars |
bool
|
Whether to allow undefined template variables |
_env |
Environment
|
Configured Jinja2 environment instance |
Source code in src/tnh_scholar/ai_text_processing/patterns.py
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
|
default_template_fields = default_template_fields or {}
instance-attribute
instructions = instructions
instance-attribute
name = name
instance-attribute
__eq__(other)
Compare patterns based on their content.
Source code in src/tnh_scholar/ai_text_processing/patterns.py
270 271 272 273 274 |
|
__hash__()
Hash based on content hash for container operations.
Source code in src/tnh_scholar/ai_text_processing/patterns.py
276 277 278 |
|
__init__(name, instructions, default_template_fields=None, allow_empty_vars=False)
Initialize a new Pattern instance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
Unique name identifying the pattern |
required |
instructions
|
MarkdownStr
|
Jinja2 template string containing the pattern |
required |
default_template_fields
|
Optional[Dict[str, str]]
|
Optional default values for template variables |
None
|
allow_empty_vars
|
bool
|
Whether to allow undefined template variables |
False
|
Raises:
Type | Description |
---|---|
ValueError
|
If name or instructions are empty |
TemplateError
|
If template syntax is invalid |
Source code in src/tnh_scholar/ai_text_processing/patterns.py
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
|
apply_template(field_values=None)
Apply template values to pattern instructions using Jinja2.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
field_values
|
Optional[Dict[str, str]]
|
Values to substitute into the template. If None, default_template_fields are used. |
None
|
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
Rendered instructions with template values applied. |
Raises:
Type | Description |
---|---|
TemplateError
|
If template rendering fails |
ValueError
|
If required template variables are missing |
Source code in src/tnh_scholar/ai_text_processing/patterns.py
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
|
content_hash()
Generate a SHA-256 hash of the pattern content.
Useful for quick content comparison and change detection.
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
Hexadecimal string of the SHA-256 hash |
Source code in src/tnh_scholar/ai_text_processing/patterns.py
221 222 223 224 225 226 227 228 229 230 231 |
|
extract_frontmatter()
Extract and validate YAML frontmatter from markdown instructions.
Returns:
Type | Description |
---|---|
Optional[Dict[str, Any]]
|
Optional[Dict]: Frontmatter data if found and valid, None otherwise |
Note
Frontmatter must be at the very start of the file and properly formatted.
Source code in src/tnh_scholar/ai_text_processing/patterns.py
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
|
from_dict(data)
classmethod
Create pattern instance from dictionary data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
Dict[str, Any]
|
Dictionary containing pattern data |
required |
Returns:
Name | Type | Description |
---|---|---|
Pattern |
Pattern
|
New pattern instance |
Raises:
Type | Description |
---|---|
ValueError
|
If required fields are missing |
Source code in src/tnh_scholar/ai_text_processing/patterns.py
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
|
get_content_without_frontmatter()
Get markdown content with frontmatter removed.
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
Markdown content without frontmatter |
Source code in src/tnh_scholar/ai_text_processing/patterns.py
189 190 191 192 193 194 195 196 197 |
|
to_dict()
Convert pattern to dictionary for serialization.
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
Dict containing all pattern data in serializable format |
Source code in src/tnh_scholar/ai_text_processing/patterns.py
233 234 235 236 237 238 239 240 241 242 243 244 |
|
update_frontmatter(new_data)
Update or add frontmatter to the markdown content.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
new_data
|
Dict[str, Any]
|
Dictionary of frontmatter fields to update |
required |
Source code in src/tnh_scholar/ai_text_processing/patterns.py
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
|
PatternManager
Main interface for pattern management system.
Provides high-level operations: - Pattern creation and loading - Automatic versioning - Safe concurrent access - Basic history tracking
Source code in src/tnh_scholar/ai_text_processing/patterns.py
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 |
|
access_manager = ConcurrentAccessManager(self.base_path / '.locks')
instance-attribute
base_path = Path(base_path).resolve()
instance-attribute
repo = GitBackedRepository(self.base_path)
instance-attribute
__init__(base_path)
Initialize pattern management system.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
base_path
|
Path
|
Base directory for pattern storage |
required |
Source code in src/tnh_scholar/ai_text_processing/patterns.py
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 |
|
get_pattern_path(pattern_name)
Recursively search for a pattern file with the given name in base_path and all subdirectories.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pattern_id
|
pattern identifier to search for |
required |
Returns:
Type | Description |
---|---|
Optional[Path]
|
Optional[Path]: Full path to the found pattern file, or None if not found |
Source code in src/tnh_scholar/ai_text_processing/patterns.py
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 |
|
load_pattern(pattern_name)
Load the .md pattern file by name, extract placeholders, and return a fully constructed Pattern object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pattern_name
|
str
|
Name of the pattern (without .md extension). |
required |
Returns:
Type | Description |
---|---|
Pattern
|
A new Pattern object whose 'instructions' is the file's text |
Pattern
|
and whose 'template_fields' are inferred from placeholders in |
Pattern
|
those instructions. |
Source code in src/tnh_scholar/ai_text_processing/patterns.py
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 |
|
save_pattern(pattern, subdir=None)
Source code in src/tnh_scholar/ai_text_processing/patterns.py
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 |
|
show_pattern_history(pattern_name)
Source code in src/tnh_scholar/ai_text_processing/patterns.py
787 788 789 790 791 792 |
|
verify_repository(base_path)
classmethod
Verify repository integrity and uniqueness of pattern names.
Performs the following checks: 1. Validates Git repository structure. 2. Ensures no duplicate pattern names exist.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
base_path
|
Path
|
Repository path to verify. |
required |
Returns:
Name | Type | Description |
---|---|---|
bool |
bool
|
True if the repository is valid and contains no duplicate pattern files. |
Source code in src/tnh_scholar/ai_text_processing/patterns.py
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 |
|
response_format
TEXT_SECTIONS_DESCRIPTION = 'Ordered list of logical sections for the text. The sequence of line ranges for the sections must cover every line from start to finish without any overlaps or gaps.'
module-attribute
LogicalSection
Bases: BaseModel
A logically coherent section of text.
Source code in src/tnh_scholar/ai_text_processing/response_format.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
|
end_line = Field(..., description='Ending line number of the section (inclusive).')
class-attribute
instance-attribute
start_line = Field(..., description='Starting line number of the section (inclusive).')
class-attribute
instance-attribute
title = Field(..., description='Meaningful title for the section in the original language of the section.')
class-attribute
instance-attribute
TextObject
Bases: BaseModel
Represents a text in any language broken into coherent logical sections.
Source code in src/tnh_scholar/ai_text_processing/response_format.py
29 30 31 32 33 34 35 |
|
language = Field(..., description='ISO 639-1 language code of the text.')
class-attribute
instance-attribute
sections = Field(..., description=TEXT_SECTIONS_DESCRIPTION)
class-attribute
instance-attribute
typing
ResponseFormat = TypeVar('ResponseFormat', bound=BaseModel)
module-attribute
audio_processing
audio
EXPECTED_TIME_FACTOR = 0.45
module-attribute
MAX_DURATION = 10 * 60
module-attribute
MAX_DURATION_MS = 10 * 60 * 1000
module-attribute
MAX_INT16 = 32768.0
module-attribute
MIN_SILENCE_LENGTH = 1000
module-attribute
SEEK_LENGTH = 50
module-attribute
SILENCE_DBFS_THRESHOLD = -30
module-attribute
logger = get_child_logger('audio_processing')
module-attribute
Boundary
dataclass
A data structure representing a detected audio boundary.
Attributes:
Name | Type | Description |
---|---|---|
start |
float
|
Start time of the segment in seconds. |
end |
float
|
End time of the segment in seconds. |
text |
str
|
Associated text (empty if silence-based). |
Example
b = Boundary(start=0.0, end=30.0, text="Hello world") b.start, b.end, b.text (0.0, 30.0, 'Hello world')
Source code in src/tnh_scholar/audio_processing/audio.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
|
end
instance-attribute
start
instance-attribute
text = ''
class-attribute
instance-attribute
__init__(start, end, text='')
audio_to_numpy(audio_segment)
Convert an AudioSegment object to a NumPy array suitable for Whisper.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
audio_segment
|
AudioSegment
|
The input audio segment to convert. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray: A mono-channel NumPy array normalized to the range [-1, 1]. |
Example
audio = AudioSegment.from_file("example.mp3") audio_numpy = audio_to_numpy(audio)
Source code in src/tnh_scholar/audio_processing/audio.py
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
|
detect_silence_boundaries(audio_file, min_silence_len=MIN_SILENCE_LENGTH, silence_thresh=SILENCE_DBFS_THRESHOLD, max_duration=MAX_DURATION_MS)
Detect boundaries (start/end times) based on silence detection.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
audio_file
|
Path
|
Path to the audio file. |
required |
min_silence_len
|
int
|
Minimum silence length to consider for splitting (ms). |
MIN_SILENCE_LENGTH
|
silence_thresh
|
int
|
Silence threshold in dBFS. |
SILENCE_DBFS_THRESHOLD
|
max_duration
|
int
|
Maximum duration of any segment (ms). |
MAX_DURATION_MS
|
Returns:
Type | Description |
---|---|
Tuple[List[Boundary], Dict]
|
List[Boundary]: A list of boundaries with empty text. |
Example
boundaries = detect_silence_boundaries(Path("my_audio.mp3")) for b in boundaries: ... print(b.start, b.end)
Source code in src/tnh_scholar/audio_processing/audio.py
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
|
detect_whisper_boundaries(audio_file, model_size='tiny', language=None)
Detect sentence boundaries using a Whisper model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
audio_file
|
Path
|
Path to the audio file. |
required |
model_size
|
str
|
Whisper model size. |
'tiny'
|
language
|
str
|
Language to force for transcription (e.g. 'en', 'vi'), or None for auto. |
None
|
Returns:
Type | Description |
---|---|
List[Boundary]
|
List[Boundary]: A list of sentence boundaries with text. |
Example
boundaries = detect_whisper_boundaries(Path("my_audio.mp3"), model_size="tiny") for b in boundaries: ... print(b.start, b.end, b.text)
Source code in src/tnh_scholar/audio_processing/audio.py
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
|
split_audio(audio_file, method='whisper', output_dir=None, model_size='tiny', language=None, min_silence_len=MIN_SILENCE_LENGTH, silence_thresh=SILENCE_DBFS_THRESHOLD, max_duration=MAX_DURATION)
High-level function to split an audio file into chunks based on a chosen method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
audio_file
|
Path
|
The input audio file. |
required |
method
|
str
|
Splitting method, "silence" or "whisper". |
'whisper'
|
output_dir
|
Path
|
Directory to store output. |
None
|
model_size
|
str
|
Whisper model size if method='whisper'. |
'tiny'
|
language
|
str
|
Language for whisper transcription if method='whisper'. |
None
|
min_silence_len
|
int
|
For silence-based detection, min silence length in ms. |
MIN_SILENCE_LENGTH
|
silence_thresh
|
int
|
Silence threshold in dBFS. |
SILENCE_DBFS_THRESHOLD
|
max_duration_s
|
int
|
Max chunk length in seconds. |
required |
max_duration_ms
|
int
|
Max chunk length in ms (for silence detection combination). |
required |
Returns:
Name | Type | Description |
---|---|---|
Path |
Path
|
Directory containing the resulting chunks. |
Example
Split using silence detection
split_audio(Path("my_audio.mp3"), method="silence")
Split using whisper-based sentence boundaries
split_audio(Path("my_audio.mp3"), method="whisper", model_size="base", language="en")
Source code in src/tnh_scholar/audio_processing/audio.py
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
split_audio_at_boundaries(audio_file, boundaries, output_dir=None, max_duration=MAX_DURATION)
Split the audio file into chunks based on provided boundaries, ensuring all audio is included and boundaries align with the start of Whisper segments.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
audio_file
|
Path
|
The input audio file. |
required |
boundaries
|
List[Boundary]
|
Detected boundaries. |
required |
output_dir
|
Path
|
Directory to store the resulting chunks. |
None
|
max_duration
|
int
|
Maximum chunk length in seconds. |
MAX_DURATION
|
Returns:
Name | Type | Description |
---|---|---|
Path |
Path
|
Directory containing the chunked audio files. |
Example
boundaries = [Boundary(34.02, 37.26, "..."), Boundary(38.0, 41.18, "...")] out_dir = split_audio_at_boundaries(Path("my_audio.mp3"), boundaries)
Source code in src/tnh_scholar/audio_processing/audio.py
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
|
whisper_model_transcribe(model, input_source, *args, **kwargs)
Wrapper around model.transcribe that suppresses the known 'FP16 is not supported on CPU; using FP32 instead' UserWarning and redirects unwanted 'OMP' messages to prevent interference.
This function accepts all args and kwargs that model.transcribe normally does, and supports input sources as file paths (str or Path) or in-memory audio arrays.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Any
|
The Whisper model instance. |
required |
input_source
|
Union[str, Path, ndarray]
|
Input audio file path, URL, or in-memory audio array. |
required |
*args
|
Additional positional arguments for model.transcribe. |
()
|
|
**kwargs
|
Additional keyword arguments for model.transcribe. |
{}
|
Returns:
Type | Description |
---|---|
Dict[str, Any]
|
Dict[str, Any]: Transcription result from model.transcribe. |
Example
Using a file path
result = whisper_model_transcribe(my_model, "sample_audio.mp3", verbose=True)
Using an audio array
result = whisper_model_transcribe(my_model, audio_array, language="en")
Source code in src/tnh_scholar/audio_processing/audio.py
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
|
transcription
logger = get_child_logger(__name__)
module-attribute
custom_to_json(transcript)
Custom JSON conversion function to handle problematic float values from Open AI API interface.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
transcript
|
Any
|
Object from OpenAI API's transcription. |
required |
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
JSON string with problematic values fixed. |
Source code in src/tnh_scholar/audio_processing/transcription.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
|
get_text_from_transcript(transcript)
Extracts and combines text from all segments of a transcription.
Args:
transcript (TranscriptionVerbose): A transcription object containing segments of text.
Returns:
str: A single string with all segment texts concatenated, separated by newlines.
Raises:
ValueError: If the transcript object is invalid or missing required attributes.
Example:
>>> from openai.types.audio.transcription_verbose import TranscriptionVerbose
>>> transcript = TranscriptionVerbose(segments=[{"text": "Hello"}, {"text": "world"}])
>>> get_text_from_transcript(transcript)
'Hello
world'
Source code in src/tnh_scholar/audio_processing/transcription.py
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
|
get_transcription(file, model, prompt, jsonl_out, mode='transcribe')
Source code in src/tnh_scholar/audio_processing/transcription.py
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
|
process_audio_chunks(directory, output_file, jsonl_file, model='whisper-1', prompt='', translate=False)
Processes all audio chunks in the specified directory using OpenAI's transcription API, saves the transcription objects into a JSONL file, and stitches the transcriptions into a single text file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
directory
|
Path
|
Path to the directory containing audio chunks. |
required |
output_file
|
Path
|
Path to the output file to save the stitched transcription. |
required |
jsonl_file
|
Path
|
Path to save the transcription objects as a JSONL file. |
required |
model
|
str
|
The transcription model to use (default is "whisper-1"). |
'whisper-1'
|
prompt
|
str
|
Optional prompt to provide context for better transcription. |
''
|
translate
|
bool
|
Optional flag to translate speech to English (useful if the audio input is not English) |
False
|
Raises: FileNotFoundError: If no audio chunks are found in the directory.
Source code in src/tnh_scholar/audio_processing/transcription.py
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
|
process_audio_file(audio_file, output_file, jsonl_file, model='whisper-1', prompt='', translate=False)
Processes a single audio file using OpenAI's transcription API, saves the transcription objects into a JSONL file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
audio_file
|
Path
|
Path to the the audio file for processing |
required |
output_file
|
Path
|
Path to the output file to save the stitched transcription. |
required |
jsonl_file
|
Path
|
Path to save the transcription objects as a JSONL file. |
required |
model
|
str
|
The transcription model to use (default is "whisper-1"). |
'whisper-1'
|
prompt
|
str
|
Optional prompt to provide context for better transcription. |
''
|
translate
|
bool
|
Optional flag to translate speech to English (useful if the audio input is not English) |
False
|
Raises: FileNotFoundError: If no audio chunks are found in the directory.
Source code in src/tnh_scholar/audio_processing/transcription.py
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
|
whisper_security
logger = get_child_logger(__name__)
module-attribute
load_whisper_model(model_name)
Safely load a Whisper model with security best practices.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_name
|
str
|
Name of the Whisper model to load (e.g., "tiny", "base", "small") |
required |
Returns:
Type | Description |
---|---|
Any
|
Loaded Whisper model |
Raises:
Type | Description |
---|---|
RuntimeError
|
If model loading fails |
Source code in src/tnh_scholar/audio_processing/whisper_security.py
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
|
safe_torch_load(weights_only=True)
Context manager that temporarily modifies torch.load to use weights_only=True by default.
This addresses the FutureWarning in PyTorch regarding pickle security: https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models
Parameters:
Name | Type | Description | Default |
---|---|---|---|
weights_only
|
bool
|
If True, limits unpickling to tensor data only. |
True
|
Yields:
Type | Description |
---|---|
None
|
None |
Example
with safe_torch_load(): ... model = whisper.load_model("tiny")
Source code in src/tnh_scholar/audio_processing/whisper_security.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
|
cli_tools
TNH Scholar CLI Tools
Command-line interface tools for the TNH Scholar project:
audio-transcribe:
Audio processing pipeline that handles downloading, segmentation,
and transcription of Buddhist teachings.
tnh-fab:
Text processing tool for texts, providing functionality for
punctuation, sectioning, translation, and pattern-based processing.
See individual tool documentation for usage details and examples.
audio_transcribe
audio_transcribe
This module provides a command line interface for handling audio transcription tasks. It can optionally: - Download audio from a YouTube URL. - Split existing audio into chunks. - Transcribe audio chunks to text.
Usage Example
Download, split, and transcribe from a single YouTube URL
audio-transcribe --yt_download --yt_process_url "https://www.youtube.com/watch?v=EXAMPLE" --split --transcribe --output_dir ./processed --prompt "Dharma, Deer Park..."
In a production environment, this CLI tool would be installed as part of the tnh-scholar
package.
DEFAULT_CHUNK_DURATION_MIN = 7
module-attribute
DEFAULT_CHUNK_DURATION_SEC = DEFAULT_CHUNK_DURATION_MIN * 60
module-attribute
DEFAULT_OUTPUT_DIR = './audio_transcriptions'
module-attribute
DEFAULT_PROMPT = 'Dharma, Deer Park, Thay, Thich Nhat Hanh, Bodhicitta, Bodhisattva, Mahayana'
module-attribute
REQUIREMENTS_PATH = TNH_CLI_TOOLS_DIR / 'audio_transcribe' / 'environment' / 'requirements.txt'
module-attribute
RE_DOWNLOAD_CONFIRMATION_STR = 'An mp3 file corresponding to {url} already exists in the output path:\n\t{output_dir}.\nSKIP download ([Y]/n)?'
module-attribute
logger = get_child_logger('audio_transcribe')
module-attribute
audio_transcribe(split, transcribe, yt_url, yt_url_csv, file, chunk_dir, output_dir, chunk_duration, no_chunks, start_time, translate, prompt, silence_boundaries, whisper_boundaries, language)
Entry point for the audio transcription pipeline. Depending on the provided flags and arguments, it can download audio from YouTube, split the audio into chunks, and/or transcribe the chunks.
Steps are:
-
Download (if requested)
-
Split (if requested)
-
Transcribe (if requested)
Source code in src/tnh_scholar/cli_tools/audio_transcribe/audio_transcribe.py
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
|
main()
Entry point for AUDIO-TRANSCRIBE CLI tool.
Source code in src/tnh_scholar/cli_tools/audio_transcribe/audio_transcribe.py
327 328 329 |
|
environment
env
logger = get_child_logger(__name__)
module-attribute
check_env()
Check the environment for necessary conditions: 1. Check OpenAI key is available. 2. Check that all requirements from requirements.txt are importable.
Source code in src/tnh_scholar/cli_tools/audio_transcribe/environment/env.py
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
|
check_requirements(requirements_file)
Check that all requirements listed in requirements.txt can be imported. If any cannot be imported, print a warning.
This is a heuristic check. Some packages may not share the same name as their importable module. Adjust the name mappings below as needed.
Example
check_requirements(Path("./requirements.txt"))
Prints warnings if imports fail, otherwise silent.
Source code in src/tnh_scholar/cli_tools/audio_transcribe/environment/env.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
|
validate
validate_inputs(is_download, yt_url, yt_url_list, audio_file, split, transcribe, chunk_dir, no_chunks, silence_boundaries, whisper_boundaries)
Validate the CLI inputs to ensure logical consistency given all the flags.
Conditions & Requirements: 1. At least one action (yt_download, split, transcribe) should be requested. Otherwise, nothing is done, so raise an error.
- If yt_download is True:
-
Must specify either yt_process_url OR yt_process_url_list (not both, not none).
-
If yt_download is False:
- If split is requested, we need a local audio file (since no download will occur).
-
If transcribe is requested without split and without yt_download:
- If no_chunks = False, we must have chunk_dir to read existing chunks.
- If no_chunks = True, we must have a local audio file (direct transcription) or previously downloaded file (but since yt_download=False, previously downloaded file scenario doesn't apply here, so effectively we need local audio in that scenario).
-
no_chunks flag:
-
If no_chunks = True, we are doing direct transcription on entire audio without chunking.
- Cannot use split if no_chunks = True. (Mutually exclusive)
- chunk_dir is irrelevant if no_chunks = True; since we don't split into chunks, requiring a chunk_dir doesn't make sense. If provided, it's not useful, but let's allow it silently or raise an error for clarity. It's safer to raise an error to prevent user confusion.
-
Boundaries flags (silence_boundaries, whisper_boundaries):
- These flags control how splitting is done.
- If split = False, these are irrelevant. Not necessarily an error, but could be a no-op. For robustness, raise an error if user specifies these without split, to avoid confusion.
- If split = True and no_chunks = True, that’s contradictory already, so no need for boundary logic there.
- If split = True, exactly one method should be chosen:
If both silence_boundaries and whisper_boundaries are True simultaneously or both are False simultaneously,
we need a clear default or raise an error. By the code snippet logic, whisper_boundaries is default True
if not stated otherwise. To keep it robust:
- If both are True, raise error.
- If both are False, that means user explicitly turned them off or never turned on whisper. The code snippet sets whisper_boundaries True by default. If user sets it False somehow, we can then default to silence. Just ensure at run-time we have a deterministic method: If both are False, we can default to whisper or silence. Let's default to whisper if no flags given. However, given the code snippet, whisper_boundaries has a default of True. If the user sets whisper_boundaries to False and also does not set silence_boundaries, then no method is chosen. Let's then raise an error if both ended up False to avoid ambiguity.
Raises:
Type | Description |
---|---|
ValueError
|
If the input arguments are not logically consistent. |
Source code in src/tnh_scholar/cli_tools/audio_transcribe/validate.py
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
|
version_check
logger = get_child_logger(__name__)
module-attribute
YTDVersionChecker
Simple version checker for yt-dlp with robust version comparison.
This is a prototype implementation may need expansion in these areas: - Caching to prevent frequent PyPI calls - More comprehensive error handling for: - Missing/uninstalled packages - Network timeouts - JSON parsing errors - Invalid version strings - Environment detection (virtualenv, conda, system Python) - Configuration options for version pinning - Proxy support for network requests
Source code in src/tnh_scholar/cli_tools/audio_transcribe/version_check.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
|
NETWORK_TIMEOUT = 5
class-attribute
instance-attribute
PYPI_URL = 'https://pypi.org/pypi/yt-dlp/json'
class-attribute
instance-attribute
check_version()
Check if yt-dlp needs updating.
Returns:
Type | Description |
---|---|
Tuple[bool, Version, Version]
|
Tuple of (needs_update, installed_version, latest_version) |
Raises:
Type | Description |
---|---|
ImportError
|
If yt-dlp is not installed |
RequestException
|
For network-related errors |
InvalidVersion
|
If version strings are invalid |
Source code in src/tnh_scholar/cli_tools/audio_transcribe/version_check.py
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
|
check_ytd_version()
Check if yt-dlp needs updating and log appropriate messages.
This function checks the installed version of yt-dlp against the latest version on PyPI and logs informational or error messages as appropriate. It handles network errors, missing packages, and version parsing issues gracefully.
The function does not raise exceptions but logs them using the application's logging system.
Source code in src/tnh_scholar/cli_tools/audio_transcribe/version_check.py
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
|
nfmt
nfmt
main()
Entry point for the nfmt CLI tool.
Source code in src/tnh_scholar/cli_tools/nfmt/nfmt.py
24 25 26 |
|
nfmt(input_file, output, spacing)
Normalize the number of newlines in a text file.
Source code in src/tnh_scholar/cli_tools/nfmt/nfmt.py
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
|
sent_split
sent_split
Simple CLI tool for sentence splitting.
This module provides a command line interface for splitting text into sentences. Uses NLTK for robust sentence tokenization. Reads from stdin and writes to stdout by default, with optional file input/output.
ensure_nltk_data()
Ensure NLTK punkt tokenizer is available.
Source code in src/tnh_scholar/cli_tools/sent_split/sent_split.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
|
main()
Source code in src/tnh_scholar/cli_tools/sent_split/sent_split.py
75 76 |
|
process_text(text, newline=True)
Split text into sentences using NLTK.
Source code in src/tnh_scholar/cli_tools/sent_split/sent_split.py
37 38 39 40 41 |
|
sent_split(input_file, output, space)
Split text into sentences using NLTK's sentence tokenizer.
Reads from stdin if no input file is specified. Writes to stdout if no output file is specified.
Source code in src/tnh_scholar/cli_tools/sent_split/sent_split.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
|
tnh_fab
tnh_fab
TNH-FAB Command Line Interface
Part of the THICH NHAT HANH SCHOLAR (TNH_SCHOLAR) project. A rapid prototype implementation of the TNH-FAB command-line tool for Open AI based text processing. Provides core functionality for text punctuation, sectioning, translation, and processing.
DEFAULT_SECTION_PATTERN = 'default_section'
module-attribute
logger = get_child_logger(__name__)
module-attribute
pass_config = click.make_pass_decorator(TNHFabConfig, ensure=True)
module-attribute
TNHFabConfig
Holds configuration for the TNH-FAB CLI tool.
Source code in src/tnh_scholar/cli_tools/tnh_fab/tnh_fab.py
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
|
debug = False
instance-attribute
pattern_manager = PatternManager(pattern_dir)
instance-attribute
quiet = False
instance-attribute
verbose = False
instance-attribute
__init__()
Source code in src/tnh_scholar/cli_tools/tnh_fab/tnh_fab.py
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
|
get_pattern(pattern_manager, pattern_name)
Get pattern from the pattern manager.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pattern_manager
|
PatternManager
|
Initialized PatternManager instance |
required |
pattern_name
|
str
|
Name of the pattern to load |
required |
Returns:
Name | Type | Description |
---|---|---|
Pattern |
Pattern
|
Loaded pattern object |
Raises:
Type | Description |
---|---|
ClickException
|
If pattern cannot be loaded |
Source code in src/tnh_scholar/cli_tools/tnh_fab/tnh_fab.py
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
|
main()
Entry point for TNH-FAB CLI tool.
Source code in src/tnh_scholar/cli_tools/tnh_fab/tnh_fab.py
481 482 483 |
|
process(config, input_file, pattern, section, paragraph, template)
Apply custom pattern-based processing to text with flexible structuring options.
This command provides flexible text processing using customizable patterns. It can process text either by sections (defined in a JSON file or auto-detected), by paragraphs, or can be used to process a text as a whole (this is the default). This is particularly useful for formatting, restructuring, or applying consistent transformations to text.
Examples:
# Process using a specific pattern
$ tnh-fab process -p format_xml input.txt
# Process using paragraph mode
$ tnh-fab process -p format_xml -g input.txt
# Process with custom sections
$ tnh-fab process -p format_xml -s sections.json input.txt
# Process with template values
$ tnh-fab process -p format_xml -t template.yaml input.txt
Processing Modes:
1. Single Input Mode (default)
- Processes entire input.
2. Section Mode (-s):
- Uses sections from JSON file if provided (-s)
- If no section file is provided, sections are auto-generated.
- Processes each section according to pattern
3. Paragraph Mode (-g):
- Treats each line/paragraph as a separate unit
- Useful for simpler processing tasks
- More memory efficient for large files
Notes: - Required pattern must exist in pattern directory - Template values can customize pattern behavior
Source code in src/tnh_scholar/cli_tools/tnh_fab/tnh_fab.py
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 |
|
punctuate(config, input_file, language, style, review_count, pattern)
Add punctuation and structure to text based on language-specific rules.
This command processes input text to add or correct punctuation, spacing, and basic structural elements. It is particularly useful for texts that lack proper punctuation or need standardization.
Examples:
# Process a file using default settings
$ tnh-fab punctuate input.txt
# Process Vietnamese text with custom style
$ tnh-fab punctuate -l vi -y "Modern" input.txt
# Process from stdin with increased review passes
$ cat input.txt | tnh-fab punctuate -c 5
Source code in src/tnh_scholar/cli_tools/tnh_fab/tnh_fab.py
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
|
read_input(ctx, input_file)
Read input from file or stdin.
Source code in src/tnh_scholar/cli_tools/tnh_fab/tnh_fab.py
63 64 65 66 67 68 69 |
|
section(config, input_file, language, num_sections, review_count, pattern)
Analyze and divide text into logical sections based on content.
This command processes the input text to identify coherent sections based on content analysis. It generates a structured representation of the text with sections that maintain logical continuity. Each section includes metadata such as title and line range.
Examples:
# Auto-detect sections in a file
$ tnh-fab section input.txt
# Specify desired number of sections
$ tnh-fab section -n 5 input.txt
# Process Vietnamese text with custom pattern
$ tnh-fab section -l vi -p custom_section_pattern input.txt
# Section text from stdin with increased review
$ cat input.txt | tnh-fab section -c 5
Output Format: JSON object containing: - language: Detected or specified language code - sections: Array of section objects, each with: - title: Section title in original language - start_line: Starting line number (inclusive) - end_line: Ending line number (inclusive)
Source code in src/tnh_scholar/cli_tools/tnh_fab/tnh_fab.py
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
|
tnh_fab(ctx, verbose, debug, quiet)
TNH-FAB: Thich Nhat Hanh Scholar Text processing command-line tool.
CORE COMMANDS: punctuate, section, translate, process
To Get help on any command and see its options:
tnh-fab [COMMAND] --help
Provides specialized processing for multi-lingual Dharma content.
Offers functionalities for punctuation, sectioning, line-based translation, and general text processing based on predefined patterns. Input text can be provided either via a file or standard input.
Source code in src/tnh_scholar/cli_tools/tnh_fab/tnh_fab.py
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
|
translate(config, input_file, language, target, style, context_lines, segment_size, pattern)
Translate text while preserving line numbers and contextual understanding.
This command performs intelligent translation that maintains line number correspondence between source and translated text. It uses surrounding context to improve translation accuracy and consistency, particularly important for Buddhist texts where terminology and context are crucial.
Examples:
# Translate Vietnamese text to English
$ tnh-fab translate -l vi input.txt
# Translate to French with specific style
$ tnh-fab translate -l vi -r fr -y "Formal" input.txt
# Translate with increased context
$ tnh-fab translate --context-lines 5 input.txt
# Translate using custom segment size
$ tnh-fab translate --segment-size 10 input.txt
Notes: - Line numbers are preserved in the output - Context lines are used to improve translation accuracy - Segment size affects processing speed and memory usage
Source code in src/tnh_scholar/cli_tools/tnh_fab/tnh_fab.py
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
|
tnh_setup
tnh_setup
OPENAI_ENV_HELP_MSG = "\n>>>>>>>>>> OpenAI API key not found in environment. <<<<<<<<<\n\nFor AI processing with TNH-scholar:\n\n1. Get an API key from https://platform.openai.com/api-keys\n2. Set the OPENAI_API_KEY environment variable:\n\n export OPENAI_API_KEY='your-api-key-here' # Linux/Mac\n set OPENAI_API_KEY=your-api-key-here # Windows\n\nFor OpenAI API access help: https://platform.openai.com/\n\n>>>>>>>>>>>>>>>>>>>>>>>>>>> -- <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\n"
module-attribute
PATTERNS_URL = 'https://github.com/aaronksolomon/patterns/archive/main.zip'
module-attribute
create_config_dirs()
Create required configuration directories.
Source code in src/tnh_scholar/cli_tools/tnh_setup/tnh_setup.py
39 40 41 42 43 |
|
download_patterns()
Download and extract pattern files from GitHub.
Source code in src/tnh_scholar/cli_tools/tnh_setup/tnh_setup.py
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
|
main()
Entry point for setup CLI tool.
Source code in src/tnh_scholar/cli_tools/tnh_setup/tnh_setup.py
97 98 99 |
|
tnh_setup(skip_env, skip_patterns)
Set up TNH Scholar configuration.
Source code in src/tnh_scholar/cli_tools/tnh_setup/tnh_setup.py
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
|
token_count
token_count
main()
Entry point for the token-count CLI tool.
Source code in src/tnh_scholar/cli_tools/token_count/token_count.py
15 16 17 |
|
token_count_cli(input_file)
Return the Open AI API token count of a text file. Based on gpt-4o.
Source code in src/tnh_scholar/cli_tools/token_count/token_count.py
6 7 8 9 10 11 12 |
|
ytt_fetch
ytt_fetch
Simple CLI tool for retrieving video transcripts.
This module provides a command line interface for downloading video transcripts in specified languages. It uses yt-dlp for video info extraction.
main()
Source code in src/tnh_scholar/cli_tools/ytt_fetch/ytt_fetch.py
65 66 |
|
ytt_fetch(url, lang, output)
Youtube Transcript Fetch: Retrieve and save transcript for a Youtube video using yt-dlp.
Source code in src/tnh_scholar/cli_tools/ytt_fetch/ytt_fetch.py
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
|
dev_tools
generate_tree
ignore_list = ['__pycache__', '*.pyc', '*.pyo', '*.pyd', '.git*', '.pytest_cache', '*.egg-info', 'dist', 'build', 'data', 'processed_data', 'sandbox', 'patterns', '.vscode', 'tmp', 'site']
module-attribute
ignore_str = '|'.join(ignore_list)
module-attribute
output_file = sys.argv[2] if len(sys.argv) > 2 else 'project_directory_tree.txt'
module-attribute
root_dir = sys.argv[1] if len(sys.argv) > 1 else '.'
module-attribute
generate_tree(root_dir='.', output_file='project_directory_tree.txt')
Source code in src/tnh_scholar/dev_tools/generate_tree.py
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
|
journal_processing
journal_process
BATCH_RETRY_DELAY = 5
module-attribute
MAX_BATCH_RETRIES = 40
module-attribute
MAX_TOKEN_LIMIT = 60000
module-attribute
journal_schema = {'type': 'object', 'properties': {'journal_summary': {'type': 'string'}, 'sections': {'type': 'array', 'items': {'type': 'object', 'properties': {'title_vi': {'type': 'string'}, 'title_en': {'type': 'string'}, 'author': {'type': ['string', 'null']}, 'summary': {'type': 'string'}, 'keywords': {'type': 'array', 'items': {'type': 'string'}}, 'start_page': {'type': 'integer', 'minimum': 1}, 'end_page': {'type': 'integer', 'minimum': 1}}, 'required': ['title_vi', 'title_en', 'summary', 'keywords', 'start_page', 'end_page']}}}, 'required': ['journal_summary', 'sections']}
module-attribute
logger = logging.getLogger('journal_process')
module-attribute
batch_section(input_xml_path, batch_jsonl, system_message, journal_name)
Splits the journal content into sections using GPT, with retries for both starting and completing the batch.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_xml_path
|
str
|
Path to the input XML file. |
required |
output_json_path
|
str
|
Path to save validated metadata JSON. |
required |
raw_output_path
|
str
|
Path to save the raw batch results. |
required |
journal_name
|
str
|
Name of the journal being processed. |
required |
max_retries
|
int
|
Maximum number of retries for batch processing. |
required |
retry_delay
|
int
|
Delay in seconds between retries. |
required |
Returns:
Name | Type | Description |
---|---|---|
str |
the result of the batch sectioning process as a serialized json object. |
Source code in src/tnh_scholar/journal_processing/journal_process.py
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
|
batch_translate(input_xml_path, batch_json_path, metadata_path, system_message, journal_name)
Translates the journal sections using the GPT model. Saves the translated content back to XML.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_xml_path
|
str
|
Path to the input XML file. |
required |
metadata_path
|
str
|
Path to the metadata JSON file. |
required |
journal_name
|
str
|
Name of the journal. |
required |
xml_output_path
|
str
|
Path to save the translated XML. |
required |
max_retries
|
int
|
Maximum number of retries for batch operations. |
required |
retry_delay
|
int
|
Delay in seconds between retries. |
required |
Returns:
Name | Type | Description |
---|---|---|
bool |
True if the process succeeds, False otherwise. |
Source code in src/tnh_scholar/journal_processing/journal_process.py
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
|
deserialize_json(serialized_data)
Converts a serialized JSON string into a Python dictionary.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
serialized_data
|
str
|
The JSON string to deserialize. |
required |
Returns:
Name | Type | Description |
---|---|---|
dict |
The deserialized Python dictionary. |
Source code in src/tnh_scholar/journal_processing/journal_process.py
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 |
|
extract_page_groups_from_metadata(metadata)
Extracts page groups from the section metadata for use with split_xml_pages
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
metadata
|
dict
|
The section metadata containing sections with start and end pages. |
required |
Returns:
Type | Description |
---|---|
List[Tuple[int, int]]: A list of tuples, each representing a page range (start_page, end_page). |
Source code in src/tnh_scholar/journal_processing/journal_process.py
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
|
generate_all_batches(processed_document_dir, system_message, user_wrap_function, file_regex='.*\\.xml')
Generate cleaning batches for all journals in the specified directory.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
processed_journals_dir
|
str
|
Path to the directory containing processed journal data. |
required |
system_message
|
str
|
System message template for batch processing. |
required |
user_wrap_function
|
callable
|
Function to wrap user input for processing pages. |
required |
file_regex
|
str
|
Regex pattern to identify target files (default: ".*.xml"). |
'.*\\.xml'
|
Returns:
Type | Description |
---|---|
None |
Source code in src/tnh_scholar/journal_processing/journal_process.py
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 |
|
generate_clean_batch(input_xml_file, output_file, system_message, user_wrap_function)
Generate a batch file for the OpenAI (OA) API using a single input XML file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch_file
|
str
|
Full path to the input XML file to process. |
required |
output_file
|
str
|
Full path to the output batch JSONL file. |
required |
system_message
|
str
|
System message template for batch processing. |
required |
user_wrap_function
|
callable
|
Function to wrap user input for processing pages. |
required |
Returns:
Name | Type | Description |
---|---|---|
str |
Path to the created batch file. |
Raises:
Type | Description |
---|---|
Exception
|
If an error occurs during file processing. |
Source code in src/tnh_scholar/journal_processing/journal_process.py
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
|
generate_single_oa_batch_from_pages(input_xml_file, output_file, system_message, user_wrap_function)
*** Depricated *** Generate a batch file for the OpenAI (OA) API using a single input XML file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch_file
|
str
|
Full path to the input XML file to process. |
required |
output_file
|
str
|
Full path to the output batch JSONL file. |
required |
system_message
|
str
|
System message template for batch processing. |
required |
user_wrap_function
|
callable
|
Function to wrap user input for processing pages. |
required |
Returns:
Name | Type | Description |
---|---|---|
str |
Path to the created batch file. |
Raises:
Type | Description |
---|---|
Exception
|
If an error occurs during file processing. |
Source code in src/tnh_scholar/journal_processing/journal_process.py
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 |
|
save_cleaned_data(cleaned_xml_path, cleaned_wrapped_pages, journal_name)
Source code in src/tnh_scholar/journal_processing/journal_process.py
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 |
|
save_sectioning_data(output_json_path, raw_output_path, serial_json, journal_name)
Source code in src/tnh_scholar/journal_processing/journal_process.py
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 |
|
save_translation_data(xml_output_path, translation_data, journal_name)
Source code in src/tnh_scholar/journal_processing/journal_process.py
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 |
|
send_data_for_tx_batch(batch_jsonl_path, section_data_to_send, system_message, max_token_list, journal_name, immediate=False)
Sends data for translation batch or immediate processing.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch_jsonl_path
|
Path
|
Path for the JSONL file to save batch data. |
required |
section_data_to_send
|
List
|
List of section data to translate. |
required |
system_message
|
str
|
System message for the translation process. |
required |
max_token_list
|
List
|
List of max tokens for each section. |
required |
journal_name
|
str
|
Name of the journal being processed. |
required |
immediate
|
bool
|
If True, run immediate chat processing instead of batch. |
False
|
Returns:
Name | Type | Description |
---|---|---|
List |
Translated data from the batch or immediate process. |
Source code in src/tnh_scholar/journal_processing/journal_process.py
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 |
|
setup_logger(log_file_path)
Configures the logger to write to a log file and the console. Adds a custom "PRIORITY_INFO" logging level for important messages.
Source code in src/tnh_scholar/journal_processing/journal_process.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
|
translate_sections(batch_jsonl_path, system_message, section_contents, section_metadata, journal_name, immediate=False)
build up sections in batches to translate
Source code in src/tnh_scholar/journal_processing/journal_process.py
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 |
|
unwrap_all_lines(pages)
Source code in src/tnh_scholar/journal_processing/journal_process.py
149 150 151 152 153 154 155 156 |
|
unwrap_lines(text)
Removes angle brackets (< >) from encapsulated lines and merges them into
a newline-separated string.
Parameters:
text (str): The input string with encapsulated lines.
Returns:
str: A newline-separated string with the encapsulation removed.
Example:
>>> merge_encapsulated_lines("<Line 1> <Line 2> <Line 3>")
'Line 1
Line 2
Line 3'
>>> merge_encapsulated_lines("
Source code in src/tnh_scholar/journal_processing/journal_process.py
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
|
validate_and_clean_data(data, schema)
Recursively validate and clean AI-generated data to fit the given schema. Any missing fields are filled with defaults, and extra fields are ignored.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
dict
|
The AI-generated data to validate and clean. |
required |
schema
|
dict
|
The schema defining the required structure. |
required |
Returns:
Name | Type | Description |
---|---|---|
dict |
The cleaned data adhering to the schema. |
Source code in src/tnh_scholar/journal_processing/journal_process.py
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
|
validate_and_save_metadata(output_file_path, json_metadata_serial, schema)
Validates and cleans journal data against the schema, then writes it to a JSON file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
str
|
The journal data as a serialized JSON string to validate and clean. |
required |
schema
|
dict
|
The schema defining the required structure. |
required |
output_file_path
|
str
|
Path to the output JSON file. |
required |
Returns:
Name | Type | Description |
---|---|---|
bool |
True if successfully written to the file, False otherwise. |
Source code in src/tnh_scholar/journal_processing/journal_process.py
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
|
wrap_all_lines(pages)
Source code in src/tnh_scholar/journal_processing/journal_process.py
122 123 |
|
wrap_lines(text)
Encloses each line of the input text with angle brackets.
Args:
text (str): The input string containing lines separated by '
'.
Returns:
str: A string where each line is enclosed in angle brackets.
Example:
>>> enclose_lines("This is a string with
two lines.")
'
Source code in src/tnh_scholar/journal_processing/journal_process.py
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
|
logging_config
BASE_LOG_DIR = Path('./logs')
module-attribute
BASE_LOG_NAME = 'tnh'
module-attribute
DEFAULT_CONSOLE_FORMAT_STRING = '%(asctime)s - %(name)s - %(log_color)s%(levelname)s%(reset)s - %(message)s'
module-attribute
DEFAULT_FILE_FORMAT_STRING = '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
module-attribute
DEFAULT_LOG_FILEPATH = Path('main.log')
module-attribute
LOG_COLORS = {'DEBUG': 'bold_green', 'INFO': 'cyan', 'PRIORITY_INFO': 'bold_cyan', 'WARNING': 'bold_yellow', 'ERROR': 'bold_red', 'CRITICAL': 'bold_red'}
module-attribute
MAX_FILE_SIZE = 10 * 1024 * 1024
module-attribute
PRIORITY_INFO_LEVEL = 25
module-attribute
OMPFilter
Bases: Filter
Source code in src/tnh_scholar/logging_config.py
42 43 44 45 |
|
filter(record)
Source code in src/tnh_scholar/logging_config.py
43 44 45 |
|
get_child_logger(name, console=None, separate_file=False)
Get a child logger that writes logs to a console or a specified file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
The name of the child logger (e.g., module name). |
required |
console
|
bool
|
If True, log to the console. If False, do not log to the console. If None, inherit console behavior from the parent logger. |
None
|
file
|
Path
|
A string specifying a logfile to log to. will be placed under existing root logs directory. If provided, a rotating file handler will be added. |
required |
Returns:
Type | Description |
---|---|
logging.Logger: Configured child logger. |
Source code in src/tnh_scholar/logging_config.py
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
|
priority_info(self, message, *args, **kwargs)
Source code in src/tnh_scholar/logging_config.py
17 18 19 |
|
setup_logging(log_level=logging.INFO, log_filepath=DEFAULT_LOG_FILEPATH, max_log_file_size=MAX_FILE_SIZE, backup_count=5, console_format=DEFAULT_CONSOLE_FORMAT_STRING, file_format=DEFAULT_FILE_FORMAT_STRING, console=True, suppressed_modules=None)
Configure the base logger with handlers, including the custom PRIORITY_INFO level.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
log_level
|
int
|
Logging level for the base logger. |
INFO
|
log_file_path
|
Path
|
Path to the log file. |
required |
max_log_file_size
|
int
|
Maximum log file size in bytes. |
MAX_FILE_SIZE
|
backup_count
|
int
|
Number of backup log files to keep. |
5
|
console_format
|
str
|
Format string for console logs. |
DEFAULT_CONSOLE_FORMAT_STRING
|
file_format
|
str
|
Format string for file logs. |
DEFAULT_FILE_FORMAT_STRING
|
suppressed_modules
|
list
|
List of third-party modules to suppress logs for. |
None
|
Source code in src/tnh_scholar/logging_config.py
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
|
ocr_processing
DEFAULT_ANNOTATION_FONT_PATH = Path('/System/Library/Fonts/Supplemental/Arial.ttf')
module-attribute
DEFAULT_ANNOTATION_FONT_SIZE = 12
module-attribute
DEFAULT_ANNOTATION_LANGUAGE_HINTS = ['vi']
module-attribute
DEFAULT_ANNOTATION_METHOD = 'DOCUMENT_TEXT_DETECTION'
module-attribute
DEFAULT_ANNOTATION_OFFSET = 2
module-attribute
logger = logging.getLogger('ocr_processing')
module-attribute
PDFParseWarning
Bases: Warning
Custom warning class for PDF parsing issues. Encapsulates minimal logic for displaying warnings with a custom format.
Source code in src/tnh_scholar/ocr_processing/ocr_processing.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
|
warn(message)
staticmethod
Display a warning message with custom formatting.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
message
|
str
|
The warning message to display. |
required |
Source code in src/tnh_scholar/ocr_processing/ocr_processing.py
30 31 32 33 34 35 36 37 38 39 |
|
annotate_image_with_text(image, text_annotations, annotation_font_path, font_size=12)
Annotates a PIL image with bounding boxes and text descriptions from OCR results.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pil_image
|
Image
|
The input PIL image to annotate. |
required |
text_annotations
|
List[EntityAnnotation]
|
OCR results containing bounding boxes and text. |
required |
annotation_font_path
|
str
|
Path to the font file for text annotations. |
required |
font_size
|
int
|
Font size for text annotations. |
12
|
Returns:
Type | Description |
---|---|
Image
|
Image.Image: The annotated PIL image. |
Raises:
Type | Description |
---|---|
ValueError
|
If the input image is None. |
IOError
|
If the font file cannot be loaded. |
Exception
|
For any other unexpected errors. |
Source code in src/tnh_scholar/ocr_processing/ocr_processing.py
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
build_processed_pdf(pdf_path, client, preprocessor=None, annotation_font_path=DEFAULT_ANNOTATION_FONT_PATH)
Processes a PDF document, extracting text, word locations, annotated images, and unannotated images.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pdf_path
|
Path
|
Path to the PDF file. |
required |
client
|
ImageAnnotatorClient
|
Google Vision API client for text detection. |
required |
annotation_font_path
|
Path
|
Path to the font file for annotations. |
DEFAULT_ANNOTATION_FONT_PATH
|
Returns:
Type | Description |
---|---|
Tuple[List[str], List[List[EntityAnnotation]], List[Image], List[Image]]
|
Tuple[List[str], List[List[vision.EntityAnnotation]], List[Image.Image], List[Image.Image]]:
- List of extracted full-page texts (one entry per page).
- List of word locations (list of |
Raises:
Type | Description |
---|---|
FileNotFoundError
|
If the specified PDF file does not exist. |
ValueError
|
If the PDF file is invalid or contains no pages. |
Exception
|
For any unexpected errors during processing. |
Example
from pathlib import Path from google.cloud import vision pdf_path = Path("/path/to/example.pdf") font_path = Path("/path/to/fonts/Arial.ttf") client = vision.ImageAnnotatorClient() try: text_pages, word_locations_list, annotated_images, unannotated_images = build_processed_pdf( pdf_path, client, font_path ) print(f"Processed {len(text_pages)} pages successfully!") except Exception as e: print(f"Error processing PDF: {e}")
Source code in src/tnh_scholar/ocr_processing/ocr_processing.py
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 |
|
deserialize_entity_annotations_from_json(data)
Deserializes JSON data into a nested list of EntityAnnotation objects.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
str
|
The JSON string containing serialized annotations. |
required |
Returns:
Type | Description |
---|---|
List[List[EntityAnnotation]]
|
List[List[EntityAnnotation]]: The reconstructed nested list of EntityAnnotation objects. |
Source code in src/tnh_scholar/ocr_processing/ocr_processing.py
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 |
|
extract_image_from_page(page)
Extracts the first image from the given PDF page and returns it as a PIL Image.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
page
|
Page
|
The PDF page object. |
required |
Returns:
Type | Description |
---|---|
Image
|
Image.Image: The first image on the page as a Pillow Image object. |
Raises:
Type | Description |
---|---|
ValueError
|
If no images are found on the page or the image data is incomplete. |
Exception
|
For unexpected errors during image extraction. |
Example
import fitz from PIL import Image doc = fitz.open("/path/to/document.pdf") page = doc.load_page(0) # Load the first page try: image = extract_image_from_page(page) image.show() # Display the image except Exception as e: print(f"Error extracting image: {e}")
Source code in src/tnh_scholar/ocr_processing/ocr_processing.py
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
|
get_page_dimensions(page)
Extracts the width and height of a single PDF page in both inches and pixels.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
page
|
Page
|
A single PDF page object from PyMuPDF. |
required |
Returns:
Name | Type | Description |
---|---|---|
dict |
dict
|
A dictionary containing the width and height of the page in inches and pixels. |
Source code in src/tnh_scholar/ocr_processing/ocr_processing.py
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
|
load_pdf_pages(pdf_path)
Opens the PDF document and returns the fitz Document object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pdf_path
|
Path
|
The path to the PDF file. |
required |
Returns:
Type | Description |
---|---|
Document
|
fitz.Document: The loaded PDF document. |
Raises:
Type | Description |
---|---|
FileNotFoundError
|
If the specified file does not exist. |
ValueError
|
If the file is not a valid PDF document. |
Exception
|
For any unexpected error. |
Example
from pathlib import Path pdf_path = Path("/path/to/example.pdf") try: pdf_doc = load_pdf_pages(pdf_path) print(f"PDF contains {pdf_doc.page_count} pages.") except Exception as e: print(f"Error loading PDF: {e}")
Source code in src/tnh_scholar/ocr_processing/ocr_processing.py
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
|
load_processed_PDF_data(base_path)
Loads processed PDF data from files using metadata for file references.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
output_dir
|
Path
|
Directory where the data is stored (as a Path object). |
required |
base_name
|
str
|
Base name of the processed directory. |
required |
Returns:
Type | Description |
---|---|
Tuple[List[str], List[List[EntityAnnotation]], List[Image], List[Image]]
|
Tuple[List[str], List[List[EntityAnnotation]], List[Image.Image], List[Image.Image]]:
- Loaded text pages.
- Word locations (list of |
Raises:
Type | Description |
---|---|
FileNotFoundError
|
If any required files are missing. |
ValueError
|
If the metadata file is incomplete or invalid. |
Source code in src/tnh_scholar/ocr_processing/ocr_processing.py
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 |
|
make_image_preprocess_mask(mask_height)
Creates a preprocessing function that masks a specified height at the bottom of the image.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mask_height
|
float
|
The proportion of the image height to mask at the bottom (0.0 to 1.0). |
required |
Returns:
Type | Description |
---|---|
Callable[[Image, int], Image]
|
Callable[[Image.Image, int], Image.Image]: A preprocessing function that takes an image |
Callable[[Image, int], Image]
|
and page number as input and returns the processed image. |
Source code in src/tnh_scholar/ocr_processing/ocr_processing.py
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
|
pil_to_bytes(image, format='PNG')
Converts a Pillow image to raw bytes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
image
|
Image
|
The Pillow image object to convert. |
required |
format
|
str
|
The format to save the image as (e.g., "PNG", "JPEG"). Default is "PNG". |
'PNG'
|
Returns:
Name | Type | Description |
---|---|---|
bytes |
bytes
|
The raw bytes of the image. |
Source code in src/tnh_scholar/ocr_processing/ocr_processing.py
42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
|
process_page(page, client, annotation_font_path, preprocessor=None)
Processes a single PDF page, extracting text, word locations, and annotated images.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
page
|
Page
|
The PDF page object. |
required |
client
|
ImageAnnotatorClient
|
Google Vision API client for text detection. |
required |
pre_processor
|
Callable[[Image, int], Image]
|
Preprocessing function for the image. |
required |
annotation_font_path
|
str
|
Path to the font file for annotations. |
required |
Returns:
Type | Description |
---|---|
Tuple[str, List[EntityAnnotation], Image, Image, dict]
|
Tuple[str, List[vision.EntityAnnotation], Image.Image, Image.Image, dict]: - Full page text (str) - Word locations (List of vision.EntityAnnotation) - Annotated image (Pillow Image object) - Original unprocessed image (Pillow Image object) - Page dimensions (dict) |
Source code in src/tnh_scholar/ocr_processing/ocr_processing.py
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
|
process_single_image(image, client, feature_type=DEFAULT_ANNOTATION_METHOD, language_hints=DEFAULT_ANNOTATION_LANGUAGE_HINTS)
Processes a single image with the Google Vision API and returns text annotations.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
image
|
Image
|
The preprocessed Pillow image object. |
required |
client
|
ImageAnnotatorClient
|
Google Vision API client for text detection. |
required |
feature_type
|
str
|
Type of text detection to use ('TEXT_DETECTION' or 'DOCUMENT_TEXT_DETECTION'). |
DEFAULT_ANNOTATION_METHOD
|
language_hints
|
List
|
Language hints for OCR. |
DEFAULT_ANNOTATION_LANGUAGE_HINTS
|
Returns:
Type | Description |
---|---|
List[EntityAnnotation]
|
List[vision.EntityAnnotation]: Text annotations from the Vision API response. |
Raises:
Type | Description |
---|---|
ValueError
|
If no text is detected. |
Source code in src/tnh_scholar/ocr_processing/ocr_processing.py
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
|
save_processed_pdf_data(output_dir, journal_name, text_pages, word_locations, annotated_images, unannotated_images)
Saves processed PDF data to files for later reloading.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
output_dir
|
Path
|
Directory to save the data (as a Path object). |
required |
base_name
|
str
|
Base name for the output directory (usually the PDF name without extension). |
required |
text_pages
|
List[str]
|
Extracted full-page text. |
required |
word_locations
|
List[List[EntityAnnotation]]
|
Word locations and annotations from Vision API. |
required |
annotated_images
|
List[Image]
|
Annotated images with bounding boxes. |
required |
unannotated_images
|
List[Image]
|
Raw unannotated images. |
required |
Returns:
Type | Description |
---|---|
None |
Source code in src/tnh_scholar/ocr_processing/ocr_processing.py
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 |
|
serialize_entity_annotations_to_json(annotations)
Serializes a nested list of EntityAnnotation objects into a JSON-compatible format using Base64 encoding.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
annotations
|
List[List[EntityAnnotation]]
|
The nested list of EntityAnnotation objects. |
required |
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
The serialized data in JSON format as a string. |
Source code in src/tnh_scholar/ocr_processing/ocr_processing.py
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 |
|
start_image_annotator_client(credentials_file=None, api_endpoint='vision.googleapis.com', timeout=(10, 30), enable_logging=False)
Starts and returns a Google Vision API ImageAnnotatorClient with optional configuration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
credentials_file
|
str
|
Path to the credentials JSON file. If None, uses the default environment variable. |
None
|
api_endpoint
|
str
|
Custom API endpoint for the Vision API. Default is the global endpoint. |
'vision.googleapis.com'
|
timeout
|
Tuple[int, int]
|
Connection and read timeouts in seconds. Default is (10, 30). |
(10, 30)
|
enable_logging
|
bool
|
Enable detailed logging for debugging. Default is False. |
False
|
Returns:
Type | Description |
---|---|
ImageAnnotatorClient
|
vision.ImageAnnotatorClient: Configured Vision API client. |
Raises:
Type | Description |
---|---|
FileNotFoundError
|
If the specified credentials file is not found. |
Exception
|
For unexpected errors during client setup. |
Example
client = start_image_annotator_client( credentials_file="/path/to/credentials.json", api_endpoint="vision.googleapis.com", timeout=(10, 30), enable_logging=True ) print("Google Vision API client initialized.")
Source code in src/tnh_scholar/ocr_processing/ocr_processing.py
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
|
ocr_editor
current_image = st.session_state.current_image
module-attribute
current_page_index = st.session_state.current_page_index
module-attribute
current_text = pages[current_page_index]
module-attribute
edited_text = st.text_area('Edit OCR Text', value=st.session_state.current_text, key=f'text_area_{st.session_state.current_page_index}', height=400)
module-attribute
image_directory = st.sidebar.text_input('Image Directory', value='./images')
module-attribute
ocr_text_directory = st.sidebar.text_input('OCR Text Directory', value='./ocr_text')
module-attribute
pages = st.session_state.pages
module-attribute
save_path = os.path.join(ocr_text_directory, 'updated_ocr.xml')
module-attribute
tree = st.session_state.tree
module-attribute
uploaded_image_file = st.sidebar.file_uploader('Upload an Image', type=['jpg', 'jpeg', 'png', 'pdf'])
module-attribute
uploaded_text_file = st.sidebar.file_uploader('Upload OCR Text File', type=['xml'])
module-attribute
extract_pages(tree)
Extract page data from the XML tree.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tree
|
ElementTree
|
Parsed XML tree. |
required |
Returns:
Name | Type | Description |
---|---|---|
list |
A list of dictionaries containing 'number' and 'text' for each page. |
Source code in src/tnh_scholar/ocr_processing/ocr_editor.py
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
|
load_xml(file_obj)
Load an XML file from a file-like object.
Source code in src/tnh_scholar/ocr_processing/ocr_editor.py
28 29 30 31 32 33 34 35 36 37 |
|
save_xml(tree, file_path)
Save the modified XML tree to a file.
Source code in src/tnh_scholar/ocr_processing/ocr_editor.py
41 42 43 44 45 46 |
|
ocr_processing
DEFAULT_ANNOTATION_FONT_PATH = Path('/System/Library/Fonts/Supplemental/Arial.ttf')
module-attribute
DEFAULT_ANNOTATION_FONT_SIZE = 12
module-attribute
DEFAULT_ANNOTATION_LANGUAGE_HINTS = ['vi']
module-attribute
DEFAULT_ANNOTATION_METHOD = 'DOCUMENT_TEXT_DETECTION'
module-attribute
DEFAULT_ANNOTATION_OFFSET = 2
module-attribute
logger = logging.getLogger('ocr_processing')
module-attribute
PDFParseWarning
Bases: Warning
Custom warning class for PDF parsing issues. Encapsulates minimal logic for displaying warnings with a custom format.
Source code in src/tnh_scholar/ocr_processing/ocr_processing.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
|
warn(message)
staticmethod
Display a warning message with custom formatting.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
message
|
str
|
The warning message to display. |
required |
Source code in src/tnh_scholar/ocr_processing/ocr_processing.py
30 31 32 33 34 35 36 37 38 39 |
|
annotate_image_with_text(image, text_annotations, annotation_font_path, font_size=12)
Annotates a PIL image with bounding boxes and text descriptions from OCR results.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pil_image
|
Image
|
The input PIL image to annotate. |
required |
text_annotations
|
List[EntityAnnotation]
|
OCR results containing bounding boxes and text. |
required |
annotation_font_path
|
str
|
Path to the font file for text annotations. |
required |
font_size
|
int
|
Font size for text annotations. |
12
|
Returns:
Type | Description |
---|---|
Image
|
Image.Image: The annotated PIL image. |
Raises:
Type | Description |
---|---|
ValueError
|
If the input image is None. |
IOError
|
If the font file cannot be loaded. |
Exception
|
For any other unexpected errors. |
Source code in src/tnh_scholar/ocr_processing/ocr_processing.py
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
build_processed_pdf(pdf_path, client, preprocessor=None, annotation_font_path=DEFAULT_ANNOTATION_FONT_PATH)
Processes a PDF document, extracting text, word locations, annotated images, and unannotated images.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pdf_path
|
Path
|
Path to the PDF file. |
required |
client
|
ImageAnnotatorClient
|
Google Vision API client for text detection. |
required |
annotation_font_path
|
Path
|
Path to the font file for annotations. |
DEFAULT_ANNOTATION_FONT_PATH
|
Returns:
Type | Description |
---|---|
Tuple[List[str], List[List[EntityAnnotation]], List[Image], List[Image]]
|
Tuple[List[str], List[List[vision.EntityAnnotation]], List[Image.Image], List[Image.Image]]:
- List of extracted full-page texts (one entry per page).
- List of word locations (list of |
Raises:
Type | Description |
---|---|
FileNotFoundError
|
If the specified PDF file does not exist. |
ValueError
|
If the PDF file is invalid or contains no pages. |
Exception
|
For any unexpected errors during processing. |
Example
from pathlib import Path from google.cloud import vision pdf_path = Path("/path/to/example.pdf") font_path = Path("/path/to/fonts/Arial.ttf") client = vision.ImageAnnotatorClient() try: text_pages, word_locations_list, annotated_images, unannotated_images = build_processed_pdf( pdf_path, client, font_path ) print(f"Processed {len(text_pages)} pages successfully!") except Exception as e: print(f"Error processing PDF: {e}")
Source code in src/tnh_scholar/ocr_processing/ocr_processing.py
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 |
|
deserialize_entity_annotations_from_json(data)
Deserializes JSON data into a nested list of EntityAnnotation objects.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
str
|
The JSON string containing serialized annotations. |
required |
Returns:
Type | Description |
---|---|
List[List[EntityAnnotation]]
|
List[List[EntityAnnotation]]: The reconstructed nested list of EntityAnnotation objects. |
Source code in src/tnh_scholar/ocr_processing/ocr_processing.py
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 |
|
extract_image_from_page(page)
Extracts the first image from the given PDF page and returns it as a PIL Image.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
page
|
Page
|
The PDF page object. |
required |
Returns:
Type | Description |
---|---|
Image
|
Image.Image: The first image on the page as a Pillow Image object. |
Raises:
Type | Description |
---|---|
ValueError
|
If no images are found on the page or the image data is incomplete. |
Exception
|
For unexpected errors during image extraction. |
Example
import fitz from PIL import Image doc = fitz.open("/path/to/document.pdf") page = doc.load_page(0) # Load the first page try: image = extract_image_from_page(page) image.show() # Display the image except Exception as e: print(f"Error extracting image: {e}")
Source code in src/tnh_scholar/ocr_processing/ocr_processing.py
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
|
get_page_dimensions(page)
Extracts the width and height of a single PDF page in both inches and pixels.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
page
|
Page
|
A single PDF page object from PyMuPDF. |
required |
Returns:
Name | Type | Description |
---|---|---|
dict |
dict
|
A dictionary containing the width and height of the page in inches and pixels. |
Source code in src/tnh_scholar/ocr_processing/ocr_processing.py
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
|
load_pdf_pages(pdf_path)
Opens the PDF document and returns the fitz Document object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pdf_path
|
Path
|
The path to the PDF file. |
required |
Returns:
Type | Description |
---|---|
Document
|
fitz.Document: The loaded PDF document. |
Raises:
Type | Description |
---|---|
FileNotFoundError
|
If the specified file does not exist. |
ValueError
|
If the file is not a valid PDF document. |
Exception
|
For any unexpected error. |
Example
from pathlib import Path pdf_path = Path("/path/to/example.pdf") try: pdf_doc = load_pdf_pages(pdf_path) print(f"PDF contains {pdf_doc.page_count} pages.") except Exception as e: print(f"Error loading PDF: {e}")
Source code in src/tnh_scholar/ocr_processing/ocr_processing.py
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
|
load_processed_PDF_data(base_path)
Loads processed PDF data from files using metadata for file references.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
output_dir
|
Path
|
Directory where the data is stored (as a Path object). |
required |
base_name
|
str
|
Base name of the processed directory. |
required |
Returns:
Type | Description |
---|---|
Tuple[List[str], List[List[EntityAnnotation]], List[Image], List[Image]]
|
Tuple[List[str], List[List[EntityAnnotation]], List[Image.Image], List[Image.Image]]:
- Loaded text pages.
- Word locations (list of |
Raises:
Type | Description |
---|---|
FileNotFoundError
|
If any required files are missing. |
ValueError
|
If the metadata file is incomplete or invalid. |
Source code in src/tnh_scholar/ocr_processing/ocr_processing.py
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 |
|
make_image_preprocess_mask(mask_height)
Creates a preprocessing function that masks a specified height at the bottom of the image.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mask_height
|
float
|
The proportion of the image height to mask at the bottom (0.0 to 1.0). |
required |
Returns:
Type | Description |
---|---|
Callable[[Image, int], Image]
|
Callable[[Image.Image, int], Image.Image]: A preprocessing function that takes an image |
Callable[[Image, int], Image]
|
and page number as input and returns the processed image. |
Source code in src/tnh_scholar/ocr_processing/ocr_processing.py
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
|
pil_to_bytes(image, format='PNG')
Converts a Pillow image to raw bytes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
image
|
Image
|
The Pillow image object to convert. |
required |
format
|
str
|
The format to save the image as (e.g., "PNG", "JPEG"). Default is "PNG". |
'PNG'
|
Returns:
Name | Type | Description |
---|---|---|
bytes |
bytes
|
The raw bytes of the image. |
Source code in src/tnh_scholar/ocr_processing/ocr_processing.py
42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
|
process_page(page, client, annotation_font_path, preprocessor=None)
Processes a single PDF page, extracting text, word locations, and annotated images.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
page
|
Page
|
The PDF page object. |
required |
client
|
ImageAnnotatorClient
|
Google Vision API client for text detection. |
required |
pre_processor
|
Callable[[Image, int], Image]
|
Preprocessing function for the image. |
required |
annotation_font_path
|
str
|
Path to the font file for annotations. |
required |
Returns:
Type | Description |
---|---|
Tuple[str, List[EntityAnnotation], Image, Image, dict]
|
Tuple[str, List[vision.EntityAnnotation], Image.Image, Image.Image, dict]: - Full page text (str) - Word locations (List of vision.EntityAnnotation) - Annotated image (Pillow Image object) - Original unprocessed image (Pillow Image object) - Page dimensions (dict) |
Source code in src/tnh_scholar/ocr_processing/ocr_processing.py
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
|
process_single_image(image, client, feature_type=DEFAULT_ANNOTATION_METHOD, language_hints=DEFAULT_ANNOTATION_LANGUAGE_HINTS)
Processes a single image with the Google Vision API and returns text annotations.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
image
|
Image
|
The preprocessed Pillow image object. |
required |
client
|
ImageAnnotatorClient
|
Google Vision API client for text detection. |
required |
feature_type
|
str
|
Type of text detection to use ('TEXT_DETECTION' or 'DOCUMENT_TEXT_DETECTION'). |
DEFAULT_ANNOTATION_METHOD
|
language_hints
|
List
|
Language hints for OCR. |
DEFAULT_ANNOTATION_LANGUAGE_HINTS
|
Returns:
Type | Description |
---|---|
List[EntityAnnotation]
|
List[vision.EntityAnnotation]: Text annotations from the Vision API response. |
Raises:
Type | Description |
---|---|
ValueError
|
If no text is detected. |
Source code in src/tnh_scholar/ocr_processing/ocr_processing.py
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
|
save_processed_pdf_data(output_dir, journal_name, text_pages, word_locations, annotated_images, unannotated_images)
Saves processed PDF data to files for later reloading.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
output_dir
|
Path
|
Directory to save the data (as a Path object). |
required |
base_name
|
str
|
Base name for the output directory (usually the PDF name without extension). |
required |
text_pages
|
List[str]
|
Extracted full-page text. |
required |
word_locations
|
List[List[EntityAnnotation]]
|
Word locations and annotations from Vision API. |
required |
annotated_images
|
List[Image]
|
Annotated images with bounding boxes. |
required |
unannotated_images
|
List[Image]
|
Raw unannotated images. |
required |
Returns:
Type | Description |
---|---|
None |
Source code in src/tnh_scholar/ocr_processing/ocr_processing.py
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 |
|
serialize_entity_annotations_to_json(annotations)
Serializes a nested list of EntityAnnotation objects into a JSON-compatible format using Base64 encoding.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
annotations
|
List[List[EntityAnnotation]]
|
The nested list of EntityAnnotation objects. |
required |
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
The serialized data in JSON format as a string. |
Source code in src/tnh_scholar/ocr_processing/ocr_processing.py
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 |
|
start_image_annotator_client(credentials_file=None, api_endpoint='vision.googleapis.com', timeout=(10, 30), enable_logging=False)
Starts and returns a Google Vision API ImageAnnotatorClient with optional configuration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
credentials_file
|
str
|
Path to the credentials JSON file. If None, uses the default environment variable. |
None
|
api_endpoint
|
str
|
Custom API endpoint for the Vision API. Default is the global endpoint. |
'vision.googleapis.com'
|
timeout
|
Tuple[int, int]
|
Connection and read timeouts in seconds. Default is (10, 30). |
(10, 30)
|
enable_logging
|
bool
|
Enable detailed logging for debugging. Default is False. |
False
|
Returns:
Type | Description |
---|---|
ImageAnnotatorClient
|
vision.ImageAnnotatorClient: Configured Vision API client. |
Raises:
Type | Description |
---|---|
FileNotFoundError
|
If the specified credentials file is not found. |
Exception
|
For unexpected errors during client setup. |
Example
client = start_image_annotator_client( credentials_file="/path/to/credentials.json", api_endpoint="vision.googleapis.com", timeout=(10, 30), enable_logging=True ) print("Google Vision API client initialized.")
Source code in src/tnh_scholar/ocr_processing/ocr_processing.py
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
|
openai_interface
openai_interface
DEBUG_DISPLAY_BUFFER = 1000
module-attribute
DEFAULT_MAX_BATCH_RETRY = 60
module-attribute
DEFAULT_MODEL_SETTINGS = {'gpt-4o': {'max_tokens': 16000, 'context_limit': 128000, 'temperature': 1.0}, 'gpt-3.5-turbo': {'max_tokens': 4096, 'context_limit': 16384, 'temperature': 1.0}, 'gpt-4o-mini': {'max_tokens': 16000, 'context_limit': 128000, 'temperature': 1.0}}
module-attribute
MAX_BATCH_LIST = 30
module-attribute
OPEN_AI_DEFAULT_MODEL = 'gpt-4o'
module-attribute
logger = get_child_logger(__name__)
module-attribute
open_ai_encoding = tiktoken.encoding_for_model(OPEN_AI_DEFAULT_MODEL)
module-attribute
open_ai_model_settings = DEFAULT_MODEL_SETTINGS
module-attribute
ClientNotInitializedError
Bases: Exception
Exception raised when the OpenAI client is not initialized.
Source code in src/tnh_scholar/openai_interface/openai_interface.py
68 69 70 71 |
|
OpenAIClient
Singleton class for managing the OpenAI client.
Source code in src/tnh_scholar/openai_interface/openai_interface.py
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
|
client = OpenAI(api_key=api_key)
instance-attribute
__init__(api_key)
Initialize the OpenAI client.
Source code in src/tnh_scholar/openai_interface/openai_interface.py
41 42 43 |
|
get_instance()
classmethod
Get or initialize the OpenAI client.
Returns:
Name | Type | Description |
---|---|---|
OpenAI |
The singleton OpenAI client instance. |
Source code in src/tnh_scholar/openai_interface/openai_interface.py
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
|
create_jsonl_file_for_batch(messages, output_file_path=None, max_token_list=None, model=OPEN_AI_DEFAULT_MODEL, tools=None, json_mode=False)
Creates a JSONL file for batch processing, with each request using the same system message, user messages, and optional function schema for function calling.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
messages
|
List[str]
|
List of message objects to be sent for completion. |
required |
output_file_path
|
str
|
The path where the .jsonl file will be saved. |
None
|
model
|
str
|
The model to use (default is set globally). |
OPEN_AI_DEFAULT_MODEL
|
functions
|
list
|
List of function schemas to enable function calling. |
required |
Returns:
Name | Type | Description |
---|---|---|
str |
The path to the generated .jsonl file. |
Source code in src/tnh_scholar/openai_interface/openai_interface.py
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
|
delete_api_files(cutoff_date)
Delete all files on OpenAI's storage older than a given date at midnight.
Parameters: - cutoff_date (datetime): The cutoff date. Files older than this date will be deleted.
Source code in src/tnh_scholar/openai_interface/openai_interface.py
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 |
|
generate_messages(system_message, user_message_wrapper, data_list_to_process, log_system_message=True)
Source code in src/tnh_scholar/openai_interface/openai_interface.py
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
|
get_active_batches()
Retrieve the list of active batches using the OpenAI API.
Source code in src/tnh_scholar/openai_interface/openai_interface.py
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 |
|
get_all_batch_info()
Retrieve the list of batches up to MAX_BATCH_LIST using the OpenAI API.
Source code in src/tnh_scholar/openai_interface/openai_interface.py
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 |
|
get_api_client()
Source code in src/tnh_scholar/openai_interface/openai_interface.py
83 84 |
|
get_batch_response(batch_id)
Retrieves the status of a batch job and returns the result if completed. Parses the JSON result file, collects the output messages, and returns them as a Python list.
Args: - batch_id : The batch_id string to retrieve status and results for.
Returns: - If completed: A list containing the message content for each response of the batch process. - If not completed: A string with the batch status.
Source code in src/tnh_scholar/openai_interface/openai_interface.py
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 |
|
get_batch_status(batch_id)
Source code in src/tnh_scholar/openai_interface/openai_interface.py
690 691 692 693 694 |
|
get_completed_batches()
Retrieve the list of active batches using the OpenAI API.
Source code in src/tnh_scholar/openai_interface/openai_interface.py
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 |
|
get_completion_content(chat_completion)
Source code in src/tnh_scholar/openai_interface/openai_interface.py
250 251 |
|
get_completion_object(chat_completion)
Source code in src/tnh_scholar/openai_interface/openai_interface.py
254 255 |
|
get_last_batch_response(n=0)
Source code in src/tnh_scholar/openai_interface/openai_interface.py
784 785 786 787 |
|
get_model_settings(model, parameter)
Source code in src/tnh_scholar/openai_interface/openai_interface.py
92 93 |
|
poll_batch_for_response(batch_id, interval=10, timeout=3600, backoff_factor=1.3, max_interval=600)
Poll the batch status until it completes, fails, or expires.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
batch_id
|
str
|
The ID of the batch to poll. |
required |
interval
|
int
|
Initial time (in seconds) to wait between polls. Default is 10 seconds. |
10
|
timeout
|
int
|
Maximum duration (in seconds) to poll before timing out. Use 1 hour as default. |
3600
|
backoff_factor
|
int
|
Factor by which the interval increases after each poll. |
1.3
|
max_interval
|
int
|
Maximum polling interval in seconds. |
600
|
Returns:
Name | Type | Description |
---|---|---|
list |
bool | list
|
The batch response if successful. |
bool |
bool | list
|
Returns False if the batch fails, times out, or expires. |
Raises:
Type | Description |
---|---|
RuntimeError
|
If the batch ID is not found or if an unexpected error occurs. |
Source code in src/tnh_scholar/openai_interface/openai_interface.py
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
|
run_immediate_chat_process(messages, max_tokens=0, response_format=None, model=OPEN_AI_DEFAULT_MODEL)
Source code in src/tnh_scholar/openai_interface/openai_interface.py
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
|
run_immediate_completion_simple(system_message, user_message, model=None, max_tokens=0, response_format=None)
Runs a single chat completion with a system message and user message.
This function simplifies the process of running a single chat completion with the OpenAI API by handling
model selection, token limits, and logging. It allows for specifying a response format and handles potential
ValueError
exceptions during the API call.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
system_message
|
str
|
The system message to guide the conversation. |
required |
user_message
|
str
|
The user's message as input for the chat completion. |
required |
model
|
str
|
The OpenAI model to use. Defaults to None, which uses the default model. |
None
|
max_tokens
|
int
|
The maximum number of tokens for the completion. Defaults to 0, which uses the model's maximum. |
0
|
response_format
|
dict
|
The desired response format. Defaults to None. |
None
|
Returns:
Type | Description |
---|---|
OpenAIObject | None: The chat completion response if successful, or None if a |
Raises:
Type | Description |
---|---|
ValueError
|
if max_tokens exceeds the model's maximum token limit. |
Source code in src/tnh_scholar/openai_interface/openai_interface.py
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
|
run_single_batch(user_prompts, system_message, user_wrap_function=None, max_token_list=None, description='')
Generate a batch file for the OpenAI (OA) API and send it.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
system_message
|
str
|
System message template for batch processing. |
required |
user_wrap_function
|
callable
|
Function to wrap user input for processing pages. |
None
|
Returns:
Name | Type | Description |
---|---|---|
str |
List[str]
|
Path to the created batch file. |
Raises:
Type | Description |
---|---|
Exception
|
If an error occurs during file processing. |
Source code in src/tnh_scholar/openai_interface/openai_interface.py
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 |
|
run_transcription_speech(audio_file, model=OPEN_AI_DEFAULT_MODEL, response_format='verbose_json', prompt='', mode='transcribe')
Source code in src/tnh_scholar/openai_interface/openai_interface.py
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
|
set_model_settings(model_settings_dict)
Source code in src/tnh_scholar/openai_interface/openai_interface.py
87 88 89 |
|
start_batch(jsonl_file, description='')
Starts a batch process using OpenAI's client with an optional description and JSONL batch file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
jsonl_file
|
Path
|
Path to the .jsonl batch file to be used as input. Must be a pathlib.Path object. |
required |
description
|
str
|
A description for metadata to label the batch job. If None, a default description is generated with the current date-time and file name. |
''
|
Returns:
Name | Type | Description |
---|---|---|
dict |
A dictionary containing the batch object if successful, or an error message if failed. |
Example
jsonl_file = Path("batch_requests.jsonl") start_batch(jsonl_file)
Source code in src/tnh_scholar/openai_interface/openai_interface.py
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
|
start_batch_with_retries(jsonl_file, description='', max_retries=DEFAULT_MAX_BATCH_RETRY, retry_delay=5, poll_interval=10, timeout=3600)
Starts a batch with retries and polls for its completion.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
jsonl_file
|
Path
|
Path to the JSONL file for batch input. |
required |
description
|
str
|
A description for the batch job (optional). |
''
|
max_retries
|
int
|
Maximum number of retries to start and complete the batch (default: 3). |
DEFAULT_MAX_BATCH_RETRY
|
retry_delay
|
int
|
Delay in seconds between retries (default: 60). |
5
|
poll_interval
|
int
|
Interval in seconds for polling batch status (default: 10). |
10
|
timeout
|
int
|
Timeout in seconds for polling (default: 23 hours). |
3600
|
Returns:
Name | Type | Description |
---|---|---|
list |
list[str]
|
The batch response if completed successfully. |
Raises:
Type | Description |
---|---|
RuntimeError
|
If the batch fails after all retries or encounters an error. |
Source code in src/tnh_scholar/openai_interface/openai_interface.py
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 |
|
token_count(text)
Source code in src/tnh_scholar/openai_interface/openai_interface.py
74 75 |
|
token_count_file(text_file)
Source code in src/tnh_scholar/openai_interface/openai_interface.py
78 79 80 |
|
run_oa_batch_jobs
BATCH_JOB_PATH = Path('UNSET')
module-attribute
CHECK_INTERVAL_SECONDS = 60
module-attribute
ENQUEUED_BATCH_TOKEN_LIMIT = 90000
module-attribute
enqueued_tokens = 0
module-attribute
sent_batches = {}
module-attribute
calculate_enqueued_tokens(active_batches)
Calculate the total number of enqueued tokens from active batches.
Source code in src/tnh_scholar/openai_interface/run_oa_batch_jobs.py
119 120 121 122 123 124 125 126 |
|
download_batch_result(client, batch_id)
Download the result of a completed batch.
Source code in src/tnh_scholar/openai_interface/run_oa_batch_jobs.py
129 130 131 132 133 134 135 136 137 138 139 140 141 |
|
get_active_batches(client)
Retrieve the list of active batches using the OpenAI API.
Source code in src/tnh_scholar/openai_interface/run_oa_batch_jobs.py
20 21 22 23 24 25 26 27 28 29 |
|
main()
Main function to manage and monitor batch jobs.
Source code in src/tnh_scholar/openai_interface/run_oa_batch_jobs.py
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
|
poll_batches(client)
Poll for completed batches and update global enqueued_tokens.
Source code in src/tnh_scholar/openai_interface/run_oa_batch_jobs.py
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
|
process_batch_files(client, batch_file_directory, remaining_tokens)
Process batch files in the batch job directory, enqueue new batches if space permits.
Source code in src/tnh_scholar/openai_interface/run_oa_batch_jobs.py
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
|
text_processing
__all__ = ['bracket_lines', 'unbracket_lines', 'lines_from_bracketed_text', 'NumberedText', 'normalize_newlines', 'clean_text']
module-attribute
NumberedText
Represents a text document with numbered lines for easy reference and manipulation.
Provides utilities for working with line-numbered text including reading, writing, accessing lines by number, and iterating over numbered lines.
Attributes:
Name | Type | Description |
---|---|---|
lines |
List[str]
|
List of text lines |
start |
int
|
Starting line number (default: 1) |
separator |
str
|
Separator between line number and content (default: ": ") |
Examples:
>>> text = "First line\nSecond line\n\nFourth line"
>>> doc = NumberedText(text)
>>> print(doc)
1: First line
2: Second line
3:
4: Fourth line
>>> print(doc.get_line(2))
Second line
>>> for num, line in doc:
... print(f"Line {num}: {len(line)} chars")
Source code in src/tnh_scholar/text_processing/numbered_text.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
|
content
property
Get original text without line numbers.
end
property
lines = []
instance-attribute
numbered_lines
property
Get list of lines with line numbers included.
Returns:
Type | Description |
---|---|
List[str]
|
List[str]: Lines with numbers and separator prefixed |
Examples:
>>> doc = NumberedText("First line\nSecond line")
>>> doc.numbered_lines
['1: First line', '2: Second line']
Note
- Unlike str(self), this returns a list rather than joined string
- Maintains consistent formatting with separator
- Useful for processing or displaying individual numbered lines
separator = separator
instance-attribute
size
property
Get the number of lines.
start = start
instance-attribute
LineSegment
dataclass
Represents a segment of lines with start and end indices in 1-based indexing.
The segment follows Python range conventions where start is inclusive and end is exclusive. However, indexing is 1-based to match NumberedText.
Attributes:
Name | Type | Description |
---|---|---|
start |
int
|
Starting line number (inclusive, 1-based) |
end |
int
|
Ending line number (exclusive, 1-based) |
Source code in src/tnh_scholar/text_processing/numbered_text.py
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
|
end
instance-attribute
start
instance-attribute
__init__(start, end)
__iter__()
Allow unpacking into start, end pairs.
Source code in src/tnh_scholar/text_processing/numbered_text.py
57 58 59 60 |
|
SegmentIterator
Iterator for generating line segments of specified size.
Produces segments of lines with start/end indices following 1-based indexing. The final segment may be smaller than the specified segment size.
Attributes:
Name | Type | Description |
---|---|---|
total_lines |
Total number of lines in text |
|
segment_size |
Number of lines per segment |
|
start_line |
Starting line number (1-based) |
|
min_segment_size |
Minimum size for the final segment |
Source code in src/tnh_scholar/text_processing/numbered_text.py
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
|
min_segment_size = min_segment_size
instance-attribute
num_segments = remaining_lines + segment_size - 1 // segment_size
instance-attribute
segment_size = segment_size
instance-attribute
start_line = start_line
instance-attribute
total_lines = total_lines
instance-attribute
__init__(total_lines, segment_size, start_line=1, min_segment_size=None)
Initialize the segment iterator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
total_lines
|
int
|
Total number of lines to iterate over |
required |
segment_size
|
int
|
Desired size of each segment |
required |
start_line
|
int
|
First line number (default: 1) |
1
|
min_segment_size
|
Optional[int]
|
Minimum size for final segment (default: None) If specified, the last segment will be merged with the previous one if it would be smaller than this size. |
None
|
Raises:
Type | Description |
---|---|
ValueError
|
If segment_size < 1 or total_lines < 1 |
ValueError
|
If start_line < 1 (must use 1-based indexing) |
ValueError
|
If min_segment_size >= segment_size |
Source code in src/tnh_scholar/text_processing/numbered_text.py
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
|
__iter__()
Iterate over line segments.
Yields:
Type | Description |
---|---|
LineSegment
|
LineSegment containing start (inclusive) and end (exclusive) indices |
Source code in src/tnh_scholar/text_processing/numbered_text.py
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
|
__getitem__(index)
Get line content by line number (1-based indexing).
Source code in src/tnh_scholar/text_processing/numbered_text.py
247 248 249 |
|
__init__(content=None, start=1, separator=':')
Initialize a numbered text document, detecting and preserving existing numbering.
Valid numbered text must have: - Sequential line numbers - Consistent separator character(s) - Every non-empty line must follow the numbering pattern
Parameters:
Name | Type | Description | Default |
---|---|---|---|
content
|
Optional[str]
|
Initial text content, if any |
None
|
start
|
int
|
Starting line number (used only if content isn't already numbered) |
1
|
separator
|
str
|
Separator between line numbers and content (only if content isn't numbered) |
':'
|
Examples:
>>> # Custom separators
>>> doc = NumberedText("1→First line\n2→Second line")
>>> doc.separator == "→"
True
>>> # Preserves starting number
>>> doc = NumberedText("5#First\n6#Second")
>>> doc.start == 5
True
>>> # Regular numbered list isn't treated as line numbers
>>> doc = NumberedText("1. First item\n2. Second item")
>>> doc.numbered_lines
['1: 1. First item', '2: 2. Second item']
Source code in src/tnh_scholar/text_processing/numbered_text.py
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
|
__iter__()
Iterate over (line_number, line_content) pairs.
Source code in src/tnh_scholar/text_processing/numbered_text.py
243 244 245 |
|
__len__()
Return the number of lines.
Source code in src/tnh_scholar/text_processing/numbered_text.py
239 240 241 |
|
__str__()
Return the numbered text representation.
Source code in src/tnh_scholar/text_processing/numbered_text.py
233 234 235 236 237 |
|
append(text)
Append text, splitting into lines if needed.
Source code in src/tnh_scholar/text_processing/numbered_text.py
324 325 326 |
|
from_file(path, **kwargs)
classmethod
Create a NumberedText instance from a file.
Source code in src/tnh_scholar/text_processing/numbered_text.py
214 215 216 217 |
|
get_line(line_num)
Get content of specified line number.
Source code in src/tnh_scholar/text_processing/numbered_text.py
251 252 253 |
|
get_lines(start, end)
Get content of line range, not inclusive of end line.
Source code in src/tnh_scholar/text_processing/numbered_text.py
263 264 265 |
|
get_numbered_line(line_num)
Get specified line with line number.
Source code in src/tnh_scholar/text_processing/numbered_text.py
258 259 260 261 |
|
get_numbered_lines(start, end)
Source code in src/tnh_scholar/text_processing/numbered_text.py
267 268 269 270 271 |
|
get_numbered_segment(start, end)
Source code in src/tnh_scholar/text_processing/numbered_text.py
310 311 |
|
get_segment(start, end)
Source code in src/tnh_scholar/text_processing/numbered_text.py
273 274 275 276 277 278 279 280 |
|
insert(line_num, text)
Insert text at specified line number. Assumes text is not empty.
Source code in src/tnh_scholar/text_processing/numbered_text.py
328 329 330 331 332 |
|
iter_segments(segment_size, min_segment_size=None)
Iterate over segments of the text with specified size.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
segment_size
|
int
|
Number of lines per segment |
required |
min_segment_size
|
Optional[int]
|
Optional minimum size for final segment. If specified, last segment will be merged with previous one if it would be smaller than this size. |
None
|
Yields:
Type | Description |
---|---|
LineSegment
|
LineSegment objects containing start and end line numbers |
Example
text = NumberedText("line1\nline2\nline3\nline4\nline5") for segment in text.iter_segments(2): ... print(f"Lines {segment.start}-{segment.end}") Lines 1-3 Lines 3-5 Lines 5-6
Source code in src/tnh_scholar/text_processing/numbered_text.py
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
|
save(path, numbered=True)
Save document to file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
Path
|
Output file path |
required |
numbered
|
bool
|
Whether to save with line numbers (default: True) |
True
|
Source code in src/tnh_scholar/text_processing/numbered_text.py
313 314 315 316 317 318 319 320 321 322 |
|
bracket_lines(text, number=False)
Encloses each line of the input text with angle brackets.
If number is True, adds a line number followed by a colon `:` and then the line.
Args:
text (str): The input string containing lines separated by '
'. number (bool): Whether to prepend line numbers to each line.
Returns:
str: A string where each line is enclosed in angle brackets.
Examples:
>>> bracket_lines("This is a string with
two lines.")
'
>>> bracket_lines("This is a string with
two lines.", number=True) '<1:This is a string with> <2: two lines.>'
Source code in src/tnh_scholar/text_processing/bracket.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
|
clean_text(text, newline=False)
Cleans a given text by replacing specific unwanted characters such as tab, and non-breaking spaces with regular spaces.
This function takes a string as input and applies replacements based on a predefined mapping of characters to replace.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text
|
str
|
The text to be cleaned. |
required |
Returns:
Name | Type | Description |
---|---|---|
str |
The cleaned text with unwanted characters replaced by spaces. |
Example
text = "This is\n an example\ttext with\xa0extra spaces." clean_text(text) 'This is an example text with extra spaces.'
Source code in src/tnh_scholar/text_processing/text_processing.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
|
lines_from_bracketed_text(text, start, end, keep_brackets=False)
Extracts lines from bracketed text between the start and end indices, inclusive.
Handles both numbered and non-numbered cases.
Args:
text (str): The input bracketed text containing lines like <...>.
start (int): The starting line number (1-based).
end (int): The ending line number (1-based).
Returns:
list[str]: The lines from start to end inclusive, with angle brackets removed.
Raises:
FormattingError: If the text contains improperly formatted lines (missing angle brackets).
ValueError: If start or end indices are invalid or out of bounds.
Examples:
>>> text = "<1:Line 1>
<2:Line 2> <3:Line 3>" >>> lines_from_bracketed_text(text, 1, 2) ['Line 1', 'Line 2']
>>> text = "<Line 1>
Source code in src/tnh_scholar/text_processing/bracket.py
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
|
normalize_newlines(text, spacing=2)
Normalize newline blocks in the input text by reducing consecutive newlines
to the specified number of newlines for consistent readability and formatting.
Parameters:
----------
text : str
The input text containing inconsistent newline spacing.
spacing : int, optional
The number of newlines to insert between lines. Defaults to 2.
Returns:
-------
str
The text with consecutive newlines reduced to the specified number of newlines.
Example:
--------
>>> raw_text = "Heading
Paragraph text 1 Paragraph text 2
" >>> normalize_newlines(raw_text, spacing=2) 'Heading
Paragraph text 1
Paragraph text 2
'
Source code in src/tnh_scholar/text_processing/text_processing.py
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
|
unbracket_lines(text, number=False)
Removes angle brackets (< >) from encapsulated lines and optionally removes line numbers.
Args:
text (str): The input string with encapsulated lines.
number (bool): If True, removes line numbers in the format 'digit:'.
Raises a ValueError if `number=True` and a line does not start with a digit followed by a colon.
Returns:
str: A newline-separated string with the encapsulation removed, and line numbers stripped if specified.
Examples:
>>> unbracket_lines("<1:Line 1>
<2:Line 2>", number=True) 'Line 1 Line 2'
>>> unbracket_lines("<Line 1>
>>> unbracket_lines("<1Line 1>", number=True)
ValueError: Line does not start with a valid number: '1Line 1'
Source code in src/tnh_scholar/text_processing/bracket.py
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
|
bracket
FormattingError
Bases: Exception
Custom exception raised for formatting-related errors.
Source code in src/tnh_scholar/text_processing/bracket.py
5 6 7 8 9 10 11 |
|
__init__(message='An error occurred due to invalid formatting.')
Source code in src/tnh_scholar/text_processing/bracket.py
10 11 |
|
bracket_all_lines(pages)
Source code in src/tnh_scholar/text_processing/bracket.py
78 79 |
|
bracket_lines(text, number=False)
Encloses each line of the input text with angle brackets.
If number is True, adds a line number followed by a colon `:` and then the line.
Args:
text (str): The input string containing lines separated by '
'. number (bool): Whether to prepend line numbers to each line.
Returns:
str: A string where each line is enclosed in angle brackets.
Examples:
>>> bracket_lines("This is a string with
two lines.")
'
>>> bracket_lines("This is a string with
two lines.", number=True) '<1:This is a string with> <2: two lines.>'
Source code in src/tnh_scholar/text_processing/bracket.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
|
lines_from_bracketed_text(text, start, end, keep_brackets=False)
Extracts lines from bracketed text between the start and end indices, inclusive.
Handles both numbered and non-numbered cases.
Args:
text (str): The input bracketed text containing lines like <...>.
start (int): The starting line number (1-based).
end (int): The ending line number (1-based).
Returns:
list[str]: The lines from start to end inclusive, with angle brackets removed.
Raises:
FormattingError: If the text contains improperly formatted lines (missing angle brackets).
ValueError: If start or end indices are invalid or out of bounds.
Examples:
>>> text = "<1:Line 1>
<2:Line 2> <3:Line 3>" >>> lines_from_bracketed_text(text, 1, 2) ['Line 1', 'Line 2']
>>> text = "<Line 1>
Source code in src/tnh_scholar/text_processing/bracket.py
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
|
number_lines(text, start=1, separator=': ')
Numbers each line of text with a readable format, including empty lines.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text
|
str
|
Input text to be numbered. Can be multi-line. |
required |
start
|
int
|
Starting line number. Defaults to 1. |
1
|
separator
|
str
|
Separator between line number and content. Defaults to ": ". |
': '
|
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
Numbered text where each line starts with "{number}: ". |
Examples:
>>> text = "First line\nSecond line\n\nFourth line"
>>> print(number_lines(text))
1: First line
2: Second line
3:
4: Fourth line
>>> print(number_lines(text, start=5, separator=" | "))
5 | First line
6 | Second line
7 |
8 | Fourth line
Notes
- All lines are numbered, including empty lines, to maintain text structure
- Line numbers are aligned through natural string formatting
- Customizable separator allows for different formatting needs
- Can start from any line number for flexibility in text processing
Source code in src/tnh_scholar/text_processing/bracket.py
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
|
unbracket_all_lines(pages)
Source code in src/tnh_scholar/text_processing/bracket.py
121 122 123 124 125 126 127 128 |
|
unbracket_lines(text, number=False)
Removes angle brackets (< >) from encapsulated lines and optionally removes line numbers.
Args:
text (str): The input string with encapsulated lines.
number (bool): If True, removes line numbers in the format 'digit:'.
Raises a ValueError if `number=True` and a line does not start with a digit followed by a colon.
Returns:
str: A newline-separated string with the encapsulation removed, and line numbers stripped if specified.
Examples:
>>> unbracket_lines("<1:Line 1>
<2:Line 2>", number=True) 'Line 1 Line 2'
>>> unbracket_lines("<Line 1>
>>> unbracket_lines("<1Line 1>", number=True)
ValueError: Line does not start with a valid number: '1Line 1'
Source code in src/tnh_scholar/text_processing/bracket.py
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
|
numbered_text
NumberedFormat
Bases: NamedTuple
Source code in src/tnh_scholar/text_processing/numbered_text.py
7 8 9 10 |
|
is_numbered
instance-attribute
separator = None
class-attribute
instance-attribute
start_num = None
class-attribute
instance-attribute
NumberedText
Represents a text document with numbered lines for easy reference and manipulation.
Provides utilities for working with line-numbered text including reading, writing, accessing lines by number, and iterating over numbered lines.
Attributes:
Name | Type | Description |
---|---|---|
lines |
List[str]
|
List of text lines |
start |
int
|
Starting line number (default: 1) |
separator |
str
|
Separator between line number and content (default: ": ") |
Examples:
>>> text = "First line\nSecond line\n\nFourth line"
>>> doc = NumberedText(text)
>>> print(doc)
1: First line
2: Second line
3:
4: Fourth line
>>> print(doc.get_line(2))
Second line
>>> for num, line in doc:
... print(f"Line {num}: {len(line)} chars")
Source code in src/tnh_scholar/text_processing/numbered_text.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
|
content
property
Get original text without line numbers.
end
property
lines = []
instance-attribute
numbered_lines
property
Get list of lines with line numbers included.
Returns:
Type | Description |
---|---|
List[str]
|
List[str]: Lines with numbers and separator prefixed |
Examples:
>>> doc = NumberedText("First line\nSecond line")
>>> doc.numbered_lines
['1: First line', '2: Second line']
Note
- Unlike str(self), this returns a list rather than joined string
- Maintains consistent formatting with separator
- Useful for processing or displaying individual numbered lines
separator = separator
instance-attribute
size
property
Get the number of lines.
start = start
instance-attribute
LineSegment
dataclass
Represents a segment of lines with start and end indices in 1-based indexing.
The segment follows Python range conventions where start is inclusive and end is exclusive. However, indexing is 1-based to match NumberedText.
Attributes:
Name | Type | Description |
---|---|---|
start |
int
|
Starting line number (inclusive, 1-based) |
end |
int
|
Ending line number (exclusive, 1-based) |
Source code in src/tnh_scholar/text_processing/numbered_text.py
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
|
end
instance-attribute
start
instance-attribute
__init__(start, end)
__iter__()
Allow unpacking into start, end pairs.
Source code in src/tnh_scholar/text_processing/numbered_text.py
57 58 59 60 |
|
SegmentIterator
Iterator for generating line segments of specified size.
Produces segments of lines with start/end indices following 1-based indexing. The final segment may be smaller than the specified segment size.
Attributes:
Name | Type | Description |
---|---|---|
total_lines |
Total number of lines in text |
|
segment_size |
Number of lines per segment |
|
start_line |
Starting line number (1-based) |
|
min_segment_size |
Minimum size for the final segment |
Source code in src/tnh_scholar/text_processing/numbered_text.py
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
|
min_segment_size = min_segment_size
instance-attribute
num_segments = remaining_lines + segment_size - 1 // segment_size
instance-attribute
segment_size = segment_size
instance-attribute
start_line = start_line
instance-attribute
total_lines = total_lines
instance-attribute
__init__(total_lines, segment_size, start_line=1, min_segment_size=None)
Initialize the segment iterator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
total_lines
|
int
|
Total number of lines to iterate over |
required |
segment_size
|
int
|
Desired size of each segment |
required |
start_line
|
int
|
First line number (default: 1) |
1
|
min_segment_size
|
Optional[int]
|
Minimum size for final segment (default: None) If specified, the last segment will be merged with the previous one if it would be smaller than this size. |
None
|
Raises:
Type | Description |
---|---|
ValueError
|
If segment_size < 1 or total_lines < 1 |
ValueError
|
If start_line < 1 (must use 1-based indexing) |
ValueError
|
If min_segment_size >= segment_size |
Source code in src/tnh_scholar/text_processing/numbered_text.py
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
|
__iter__()
Iterate over line segments.
Yields:
Type | Description |
---|---|
LineSegment
|
LineSegment containing start (inclusive) and end (exclusive) indices |
Source code in src/tnh_scholar/text_processing/numbered_text.py
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
|
__getitem__(index)
Get line content by line number (1-based indexing).
Source code in src/tnh_scholar/text_processing/numbered_text.py
247 248 249 |
|
__init__(content=None, start=1, separator=':')
Initialize a numbered text document, detecting and preserving existing numbering.
Valid numbered text must have: - Sequential line numbers - Consistent separator character(s) - Every non-empty line must follow the numbering pattern
Parameters:
Name | Type | Description | Default |
---|---|---|---|
content
|
Optional[str]
|
Initial text content, if any |
None
|
start
|
int
|
Starting line number (used only if content isn't already numbered) |
1
|
separator
|
str
|
Separator between line numbers and content (only if content isn't numbered) |
':'
|
Examples:
>>> # Custom separators
>>> doc = NumberedText("1→First line\n2→Second line")
>>> doc.separator == "→"
True
>>> # Preserves starting number
>>> doc = NumberedText("5#First\n6#Second")
>>> doc.start == 5
True
>>> # Regular numbered list isn't treated as line numbers
>>> doc = NumberedText("1. First item\n2. Second item")
>>> doc.numbered_lines
['1: 1. First item', '2: 2. Second item']
Source code in src/tnh_scholar/text_processing/numbered_text.py
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
|
__iter__()
Iterate over (line_number, line_content) pairs.
Source code in src/tnh_scholar/text_processing/numbered_text.py
243 244 245 |
|
__len__()
Return the number of lines.
Source code in src/tnh_scholar/text_processing/numbered_text.py
239 240 241 |
|
__str__()
Return the numbered text representation.
Source code in src/tnh_scholar/text_processing/numbered_text.py
233 234 235 236 237 |
|
append(text)
Append text, splitting into lines if needed.
Source code in src/tnh_scholar/text_processing/numbered_text.py
324 325 326 |
|
from_file(path, **kwargs)
classmethod
Create a NumberedText instance from a file.
Source code in src/tnh_scholar/text_processing/numbered_text.py
214 215 216 217 |
|
get_line(line_num)
Get content of specified line number.
Source code in src/tnh_scholar/text_processing/numbered_text.py
251 252 253 |
|
get_lines(start, end)
Get content of line range, not inclusive of end line.
Source code in src/tnh_scholar/text_processing/numbered_text.py
263 264 265 |
|
get_numbered_line(line_num)
Get specified line with line number.
Source code in src/tnh_scholar/text_processing/numbered_text.py
258 259 260 261 |
|
get_numbered_lines(start, end)
Source code in src/tnh_scholar/text_processing/numbered_text.py
267 268 269 270 271 |
|
get_numbered_segment(start, end)
Source code in src/tnh_scholar/text_processing/numbered_text.py
310 311 |
|
get_segment(start, end)
Source code in src/tnh_scholar/text_processing/numbered_text.py
273 274 275 276 277 278 279 280 |
|
insert(line_num, text)
Insert text at specified line number. Assumes text is not empty.
Source code in src/tnh_scholar/text_processing/numbered_text.py
328 329 330 331 332 |
|
iter_segments(segment_size, min_segment_size=None)
Iterate over segments of the text with specified size.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
segment_size
|
int
|
Number of lines per segment |
required |
min_segment_size
|
Optional[int]
|
Optional minimum size for final segment. If specified, last segment will be merged with previous one if it would be smaller than this size. |
None
|
Yields:
Type | Description |
---|---|
LineSegment
|
LineSegment objects containing start and end line numbers |
Example
text = NumberedText("line1\nline2\nline3\nline4\nline5") for segment in text.iter_segments(2): ... print(f"Lines {segment.start}-{segment.end}") Lines 1-3 Lines 3-5 Lines 5-6
Source code in src/tnh_scholar/text_processing/numbered_text.py
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
|
save(path, numbered=True)
Save document to file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
Path
|
Output file path |
required |
numbered
|
bool
|
Whether to save with line numbers (default: True) |
True
|
Source code in src/tnh_scholar/text_processing/numbered_text.py
313 314 315 316 317 318 319 320 321 322 |
|
get_numbered_format(text)
Analyze text to determine if it follows a consistent line numbering format.
Valid formats have: - Sequential numbers starting from some value - Consistent separator character(s) - Every line must follow the format
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text
|
str
|
Text to analyze |
required |
Returns:
Type | Description |
---|---|
NumberedFormat
|
Tuple of (is_numbered, separator, start_number) |
Examples:
>>> _analyze_numbered_format("1→First\n2→Second")
(True, "→", 1)
>>> _analyze_numbered_format("1. First") # Numbered list format
(False, None, None)
>>> _analyze_numbered_format("5#Line\n6#Other")
(True, "#", 5)
Source code in src/tnh_scholar/text_processing/numbered_text.py
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
|
simple_section
MatchObject
Bases: BaseModel
Basic Match Object definition.
Source code in src/tnh_scholar/text_processing/simple_section.py
10 11 12 13 14 15 16 17 |
|
case_sensitive = False
class-attribute
instance-attribute
decorator = None
class-attribute
instance-attribute
level = None
class-attribute
instance-attribute
pattern = None
class-attribute
instance-attribute
type
instance-attribute
words = None
class-attribute
instance-attribute
SectionConfig
Bases: BaseModel
Configuration for section detection.
Source code in src/tnh_scholar/text_processing/simple_section.py
19 20 21 22 23 |
|
description = None
class-attribute
instance-attribute
name
instance-attribute
patterns
instance-attribute
create_text_object(text, boundaries)
Create TextObject from text and section boundaries.
Source code in src/tnh_scholar/text_processing/simple_section.py
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
|
find_keyword(line, words, case_sensitive, decorator)
Check if line matches keyword pattern.
Source code in src/tnh_scholar/text_processing/simple_section.py
30 31 32 33 34 35 36 37 38 39 40 41 |
|
find_markdown_header(line, level)
Check if line matches markdown header pattern.
Source code in src/tnh_scholar/text_processing/simple_section.py
25 26 27 28 |
|
find_regex(line, pattern)
Check if line matches regex pattern.
Source code in src/tnh_scholar/text_processing/simple_section.py
43 44 45 |
|
find_section_boundaries(text, config)
Find all section boundary line numbers.
Source code in src/tnh_scholar/text_processing/simple_section.py
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
|
text_object
Text object system for managing sectioned content with metadata.
This module provides the core TextObject implementation, handling both internal representation and API interactions. It uses Dublin Core for metadata standards and provides a simplified format for AI service integration.
LogicalSection
Bases: BaseModel
Represents a logical division of text content.
Source code in src/tnh_scholar/text_processing/text_object.py
15 16 17 18 19 20 21 22 23 |
|
start_line = Field(..., description='Starting line number of section (inclusive)')
class-attribute
instance-attribute
title = Field(..., description='Title describing section content')
class-attribute
instance-attribute
__lt__(other)
Enable sorting by start line.
Source code in src/tnh_scholar/text_processing/text_object.py
21 22 23 |
|
TextMetadata
dataclass
Rich metadata container following Dublin Core standards.
Source code in src/tnh_scholar/text_processing/text_object.py
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
|
additional_info = field(default_factory=dict)
class-attribute
instance-attribute
context = field(default='')
class-attribute
instance-attribute
contributor = field(default_factory=list)
class-attribute
instance-attribute
creator
instance-attribute
date = None
class-attribute
instance-attribute
description
instance-attribute
format = 'text/plain'
class-attribute
instance-attribute
identifier = None
class-attribute
instance-attribute
language = 'en'
class-attribute
instance-attribute
publisher = None
class-attribute
instance-attribute
source = None
class-attribute
instance-attribute
subject
instance-attribute
title
instance-attribute
type = 'Text'
class-attribute
instance-attribute
__init__(title, creator, subject, description, publisher=None, contributor=list(), date=None, type='Text', format='text/plain', identifier=None, source=None, language='en', context='', additional_info=dict())
from_string(metadata_str, context='')
classmethod
Parse metadata from string representation.
Source code in src/tnh_scholar/text_processing/text_object.py
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
|
to_string()
Convert metadata to human-readable string format.
Source code in src/tnh_scholar/text_processing/text_object.py
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
|
TextMetadataFormat
Bases: BaseModel
Simplified metadata format optimized for AI processing.
Source code in src/tnh_scholar/text_processing/text_object.py
25 26 27 28 29 30 31 32 33 34 35 |
|
context = Field(..., description='Rich contextual information for AI understanding')
class-attribute
instance-attribute
metadata_summary = Field(..., description='Available metadata in human-readable format')
class-attribute
instance-attribute
TextObject
Main class for managing sectioned text content with metadata.
Source code in src/tnh_scholar/text_processing/text_object.py
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
|
content = numbered_text
instance-attribute
language = get_language_code(language)
instance-attribute
metadata = metadata
instance-attribute
sections = sorted(sections)
instance-attribute
total_lines = numbered_text.size
instance-attribute
__init__(numbered_text, language, sections, metadata)
Initialize TextObject with content and metadata.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
numbered_text
|
NumberedText
|
Text content with line numbering |
required |
language
|
str
|
ISO 639-1 language code |
required |
sections
|
List[LogicalSection]
|
List of logical sections |
required |
metadata
|
TextMetadata
|
Dublin Core metadata |
required |
Raises:
Type | Description |
---|---|
ValueError
|
If sections are invalid or text is empty |
Source code in src/tnh_scholar/text_processing/text_object.py
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
|
__iter__()
Iterate over sections.
Source code in src/tnh_scholar/text_processing/text_object.py
250 251 252 |
|
__len__()
Return number of sections.
Source code in src/tnh_scholar/text_processing/text_object.py
246 247 248 |
|
from_response_format(text, response)
classmethod
Create from API response.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text
|
NumberedText
|
Text content |
required |
response
|
TextObjectFormat
|
API response format |
required |
Returns:
Type | Description |
---|---|
TextObject
|
New TextObject instance |
Source code in src/tnh_scholar/text_processing/text_object.py
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
|
get_section_content(index)
Retrieve content for specific section.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index
|
int
|
Section index |
required |
Returns:
Type | Description |
---|---|
str
|
Text content for the section |
Raises:
Type | Description |
---|---|
IndexError
|
If index is out of range |
Source code in src/tnh_scholar/text_processing/text_object.py
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
|
to_response_format()
Convert to API format.
Returns:
Type | Description |
---|---|
TextObjectFormat
|
TextObjectFormat for API interaction |
Source code in src/tnh_scholar/text_processing/text_object.py
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
|
TextObjectFormat
Bases: BaseModel
Complete format for API interactions.
Source code in src/tnh_scholar/text_processing/text_object.py
37 38 39 40 41 42 |
|
language = Field(..., description='ISO 639-1 language code')
class-attribute
instance-attribute
metadata
instance-attribute
sections
instance-attribute
text_processing
clean_text(text, newline=False)
Cleans a given text by replacing specific unwanted characters such as tab, and non-breaking spaces with regular spaces.
This function takes a string as input and applies replacements based on a predefined mapping of characters to replace.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text
|
str
|
The text to be cleaned. |
required |
Returns:
Name | Type | Description |
---|---|---|
str |
The cleaned text with unwanted characters replaced by spaces. |
Example
text = "This is\n an example\ttext with\xa0extra spaces." clean_text(text) 'This is an example text with extra spaces.'
Source code in src/tnh_scholar/text_processing/text_processing.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
|
normalize_newlines(text, spacing=2)
Normalize newline blocks in the input text by reducing consecutive newlines
to the specified number of newlines for consistent readability and formatting.
Parameters:
----------
text : str
The input text containing inconsistent newline spacing.
spacing : int, optional
The number of newlines to insert between lines. Defaults to 2.
Returns:
-------
str
The text with consecutive newlines reduced to the specified number of newlines.
Example:
--------
>>> raw_text = "Heading
Paragraph text 1 Paragraph text 2
" >>> normalize_newlines(raw_text, spacing=2) 'Heading
Paragraph text 1
Paragraph text 2
'
Source code in src/tnh_scholar/text_processing/text_processing.py
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
|
utils
file_utils
FileExistsWarning
Bases: UserWarning
Source code in src/tnh_scholar/utils/file_utils.py
8 9 |
|
copy_files_with_regex(source_dir, destination_dir, regex_patterns, preserve_structure=True)
Copies files from subdirectories one level down in the source directory to the destination directory if they match any regex pattern. Optionally preserves the directory structure.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
source_dir
|
Path
|
Path to the source directory to search files in. |
required |
destination_dir
|
Path
|
Path to the destination directory where files will be copied. |
required |
regex_patterns
|
list[str]
|
List of regex patterns to match file names. |
required |
preserve_structure
|
bool
|
Whether to preserve the directory structure. Defaults to True. |
True
|
Raises:
Type | Description |
---|---|
ValueError
|
If the source directory does not exist or is not a directory. |
Example
copy_files_with_regex( ... source_dir=Path("/path/to/source"), ... destination_dir=Path("/path/to/destination"), ... regex_patterns=[r'..txt$', r'..log$'], ... preserve_structure=True ... )
Source code in src/tnh_scholar/utils/file_utils.py
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
|
ensure_directory_exists(dir_path)
Create directory if it doesn't exist.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dir_path
|
Path
|
Directory path to ensure exists. |
required |
Source code in src/tnh_scholar/utils/file_utils.py
12 13 14 15 16 17 18 19 20 |
|
get_text_from_file(file_path)
Reads the entire content of a text file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
file_path
|
Path
|
The path to the text file. |
required |
Returns:
Type | Description |
---|---|
str
|
The content of the text file as a single string. |
Source code in src/tnh_scholar/utils/file_utils.py
115 116 117 118 119 120 121 122 123 124 125 126 |
|
iterate_subdir(directory, recursive=False)
Iterates through subdirectories in the given directory.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
directory
|
Path
|
The root directory to start the iteration. |
required |
recursive
|
bool
|
If True, iterates recursively through all subdirectories. If False, iterates only over the immediate subdirectories. |
False
|
Yields:
Name | Type | Description |
---|---|---|
Path |
Path
|
Paths to each subdirectory. |
Example
for subdir in iterate_subdir(Path('/root'), recursive=False): ... print(subdir)
Source code in src/tnh_scholar/utils/file_utils.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
|
write_text_to_file(file_path, content, overwrite=False, append=False)
Writes text content to a file, handling overwriting and appending.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
file_path
|
Path
|
The path to the file. |
required |
content
|
str
|
The text content to write. |
required |
overwrite
|
bool
|
If True, overwrites the file if it exists. |
False
|
append
|
bool
|
If True, appends the content to the file if it exists. |
False
|
Raises:
Type | Description |
---|---|
FileExistsWarning
|
If the file exists and neither overwrite nor append are True. |
Source code in src/tnh_scholar/utils/file_utils.py
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
|
json_utils
format_json(file)
Formats a JSON file with line breaks and indentation for readability.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
file
|
Path
|
Path to the JSON file to be formatted. |
required |
Example
format_json(Path("data.json"))
Source code in src/tnh_scholar/utils/json_utils.py
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
|
load_json_into_model(file, model)
Loads a JSON file and validates it against a Pydantic model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
file
|
Path
|
Path to the JSON file. |
required |
model
|
type[BaseModel]
|
The Pydantic model to validate against. |
required |
Returns:
Name | Type | Description |
---|---|---|
BaseModel |
BaseModel
|
An instance of the validated Pydantic model. |
Raises:
Type | Description |
---|---|
ValueError
|
If the file content is invalid JSON or does not match the model. |
Example: class ExampleModel(BaseModel): name: str age: int city: str
if __name__ == "__main__":
json_file = Path("example.json")
try:
data = load_json_into_model(json_file, ExampleModel)
print(data)
except ValueError as e:
print(e)
Source code in src/tnh_scholar/utils/json_utils.py
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
|
load_jsonl_to_dict(file_path)
Load a JSONL file into a list of dictionaries.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
file_path
|
Path
|
Path to the JSONL file. |
required |
Returns:
Type | Description |
---|---|
List[Dict]
|
List[Dict]: A list of dictionaries, each representing a line in the JSONL file. |
Example
from pathlib import Path file_path = Path("data.jsonl") data = load_jsonl_to_dict(file_path) print(data) [{'key1': 'value1'}, {'key2': 'value2'}]
Source code in src/tnh_scholar/utils/json_utils.py
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
|
save_model_to_json(file, model, indent=4, ensure_ascii=False)
Saves a Pydantic model to a JSON file, formatted with indentation for readability.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
file
|
Path
|
Path to the JSON file where the model will be saved. |
required |
model
|
BaseModel
|
The Pydantic model instance to save. |
required |
indent
|
int
|
Number of spaces for JSON indentation. Defaults to 4. |
4
|
ensure_ascii
|
bool
|
Whether to escape non-ASCII characters. Defaults to False. |
False
|
Raises:
Type | Description |
---|---|
ValueError
|
If the model cannot be serialized to JSON. |
IOError
|
If there is an issue writing to the file. |
Example
class ExampleModel(BaseModel): name: str age: int
if name == "main": model_instance = ExampleModel(name="John", age=30) json_file = Path("example.json") try: save_model_to_json(json_file, model_instance) print(f"Model saved to {json_file}") except (ValueError, IOError) as e: print(e)
Source code in src/tnh_scholar/utils/json_utils.py
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
|
write_data_to_json_file(file, data, indent=4, ensure_ascii=False)
Writes a dictionary or list as a JSON string to a file, ensuring the parent directory exists, and supports formatting with indentation and ASCII control.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
file
|
Path
|
Path to the JSON file where the data will be written. |
required |
data
|
Union[dict, list]
|
The data to write to the file. Typically a dict or list. |
required |
indent
|
int
|
Number of spaces for JSON indentation. Defaults to 4. |
4
|
ensure_ascii
|
bool
|
Whether to escape non-ASCII characters. Defaults to False. |
False
|
Raises:
Type | Description |
---|---|
ValueError
|
If the data cannot be serialized to JSON. |
IOError
|
If there is an issue writing to the file. |
Example
from pathlib import Path data = {"key": "value"} write_json_str_to_file(Path("output.json"), data, indent=2, ensure_ascii=True)
Source code in src/tnh_scholar/utils/json_utils.py
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
|
lang
logger = get_child_logger(__name__)
module-attribute
get_language_code(text)
Detect the language of the provided text using langdetect.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text
|
str
|
Text to analyze
|
required |
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
return result 'code' ISO 639-1 for detected language. |
Raises:
Type | Description |
---|---|
ValueError
|
If text is empty or invalid |
Source code in src/tnh_scholar/utils/lang.py
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
|
get_language_from_code(code)
Source code in src/tnh_scholar/utils/lang.py
40 41 42 43 44 |
|
get_language_name(text)
Source code in src/tnh_scholar/utils/lang.py
36 37 |
|
progress_utils
BAR_FORMAT = '{desc}: {percentage:3.0f}%|{bar}| Total: {total_fmt} sec. [elapsed: {elapsed}]'
module-attribute
ExpectedTimeTQDM
A context manager for a time-based tqdm progress bar with optional delay.
- 'expected_time': number of seconds we anticipate the task might take.
- 'display_interval': how often (seconds) to refresh the bar.
- 'desc': a short description for the bar.
- 'delay_start': how many seconds to wait (sleep) before we even create/start the bar.
If the task finishes before 'delay_start' has elapsed, the bar may never appear.
Source code in src/tnh_scholar/utils/progress_utils.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
|
delay_start = delay_start
instance-attribute
desc = desc
instance-attribute
display_interval = display_interval
instance-attribute
expected_time = round(expected_time)
instance-attribute
__enter__()
Source code in src/tnh_scholar/utils/progress_utils.py
41 42 43 44 45 46 47 48 49 |
|
__exit__(exc_type, exc_value, traceback)
Source code in src/tnh_scholar/utils/progress_utils.py
70 71 72 73 74 75 76 77 78 79 80 81 |
|
__init__(expected_time, display_interval=0.5, desc='Time-based Progress', delay_start=1.0)
Source code in src/tnh_scholar/utils/progress_utils.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
|
TimeProgress
A context manager for a time-based progress display using dots.
The display updates once per second, printing a dot and showing: - Expected time (if provided) - Elapsed time (always displayed)
Example:
import time with ExpectedTimeProgress(expected_time=60, desc="Transcribing..."): ... time.sleep(5) # Simulate work [Expected Time: 1:00, Elapsed Time: 0:05] .....
Parameters:
Name | Type | Description | Default |
---|---|---|---|
expected_time
|
Optional[float]
|
Expected time in seconds. Optional. |
None
|
display_interval
|
float
|
How often to print a dot (seconds). |
1.0
|
desc
|
str
|
Description to display alongside the progress. |
''
|
Source code in src/tnh_scholar/utils/progress_utils.py
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
|
desc = desc
instance-attribute
display_interval = display_interval
instance-attribute
expected_time = expected_time
instance-attribute
__enter__()
Source code in src/tnh_scholar/utils/progress_utils.py
122 123 124 125 126 127 128 129 130 |
|
__exit__(exc_type, exc_value, traceback)
Source code in src/tnh_scholar/utils/progress_utils.py
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
|
__init__(expected_time=None, display_interval=1.0, desc='')
Source code in src/tnh_scholar/utils/progress_utils.py
108 109 110 111 112 113 114 115 116 117 118 119 120 |
|
slugify
slugify(string)
Slugify a Unicode string.
Converts a string to a strict URL-friendly slug format, allowing only lowercase letters, digits, and hyphens.
Example
slugify("Héllø_Wörld!") 'hello-world'
Source code in src/tnh_scholar/utils/slugify.py
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
|
user_io_utils
get_single_char(prompt=None)
Get a single character from input, adapting to the execution environment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
prompt
|
Optional[str]
|
Optional prompt to display before getting input |
None
|
Returns:
Type | Description |
---|---|
str
|
A single character string from user input |
Note
- In terminal environments, uses raw input mode without requiring Enter
- In Jupyter/IPython, falls back to regular input with message about Enter
Source code in src/tnh_scholar/utils/user_io_utils.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
|
get_user_confirmation(prompt, default=True)
Prompt the user for a yes/no confirmation with single-character input. Cross-platform implementation. Returns True if 'y' is entered, and False if 'n' Allows for default value if return is entered.
Example usage if get_user_confirmation("Do you want to continue"): print("Continuing...") else: print("Exiting...")
Source code in src/tnh_scholar/utils/user_io_utils.py
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
|
validate
OCR_ENV_VARS = {'GOOGLE_APPLICATION_CREDENTIALS'}
module-attribute
OPENAI_ENV_VARS = {'OPENAI_API_KEY'}
module-attribute
logger = get_child_logger(__name__)
module-attribute
check_env(required_vars, feature='this feature', output=True)
Check environment variables and provide user-friendly error messages.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
required_vars
|
Set[str]
|
Set of environment variable names to check |
required |
feature
|
str
|
Description of feature requiring these variables |
'this feature'
|
Returns:
Name | Type | Description |
---|---|---|
bool |
bool
|
True if all required variables are set |
Source code in src/tnh_scholar/utils/validate.py
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
|
check_ocr_env(output=True)
Check OCR processing requirements.
Source code in src/tnh_scholar/utils/validate.py
58 59 60 |
|
check_openai_env(output=True)
Check OpenAI API requirements.
Source code in src/tnh_scholar/utils/validate.py
54 55 56 |
|
get_env_message(missing_vars, feature='this feature')
Generate user-friendly environment setup message.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
missing_vars
|
List[str]
|
List of missing environment variable names |
required |
feature
|
str
|
Name of feature requiring the variables |
'this feature'
|
Returns:
Type | Description |
---|---|
str
|
Formatted error message with setup instructions |
Source code in src/tnh_scholar/utils/validate.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
|
video_processing
video_processing
DEFAULT_TRANSCRIPT_DIR = Path.home() / '.yt_dlp_transcripts'
module-attribute
DEFAULT_TRANSCRIPT_OPTIONS = {'skip_download': True, 'quiet': True, 'no_warnings': True, 'extract_flat': True, 'socket_timeout': 30, 'retries': 3, 'ignoreerrors': True, 'logger': logger}
module-attribute
logger = get_child_logger(__name__)
module-attribute
SubtitleTrack
Bases: TypedDict
Type definition for a subtitle track entry.
Source code in src/tnh_scholar/video_processing/video_processing.py
58 59 60 61 62 63 |
|
ext
instance-attribute
name
instance-attribute
url
instance-attribute
TranscriptNotFoundError
Bases: Exception
Raised when no transcript is available for the requested language.
Source code in src/tnh_scholar/video_processing/video_processing.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
|
language = language
instance-attribute
video_url = video_url
instance-attribute
__init__(video_url, language)
Initialize TranscriptNotFoundError.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
video_url
|
str
|
URL of the video where transcript was not found |
required |
language
|
str
|
Language code that was requested |
required |
available_manual
|
List of available manual transcript languages |
required | |
available_auto
|
List of available auto-generated transcript languages |
required |
Source code in src/tnh_scholar/video_processing/video_processing.py
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
|
VideoInfo
Bases: TypedDict
Type definition for relevant video info fields.
Source code in src/tnh_scholar/video_processing/video_processing.py
66 67 68 69 70 |
|
automatic_captions
instance-attribute
subtitles
instance-attribute
download_audio_yt(url, output_dir, start_time=None, prompt_overwrite=True)
Downloads audio from a YouTube video using yt_dlp.YoutubeDL, with an optional start time.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
url
|
str
|
URL of the YouTube video. |
required |
output_dir
|
Path
|
Directory to save the downloaded audio file. |
required |
start_time
|
str
|
Optional start time (e.g., '00:01:30' for 1 minute 30 seconds). |
None
|
Returns:
Name | Type | Description |
---|---|---|
Path |
Path
|
Path to the downloaded audio file. |
Source code in src/tnh_scholar/video_processing/video_processing.py
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
|
get_transcript(url, lang='en', download_dir=DEFAULT_TRANSCRIPT_DIR, keep_transcript_file=False)
Downloads and extracts the transcript for a given YouTube video URL.
Retrieves the transcript file, extracts the text content, and returns the raw text.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
url
|
str
|
The URL of the YouTube video. |
required |
lang
|
str
|
The language code for the transcript (default: 'en'). |
'en'
|
download_dir
|
Path
|
The directory to download the transcript to. |
DEFAULT_TRANSCRIPT_DIR
|
keep_transcript_file
|
bool
|
Whether to keep the downloaded transcript file (default: False). |
False
|
Returns:
Type | Description |
---|---|
str
|
The extracted transcript text. |
Raises:
Type | Description |
---|---|
TranscriptNotFoundError
|
If no transcript is available in the specified language. |
DownloadError
|
If video info extraction or download fails. |
ValueError
|
If the downloaded transcript file is invalid or empty. |
ParseError
|
If XML parsing of the transcript fails. |
Source code in src/tnh_scholar/video_processing/video_processing.py
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
|
get_transcript_info(video_url, lang='en')
Retrieves the transcript URL for a video in the specified language.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
video_url
|
str
|
The URL of the video |
required |
lang
|
str
|
The desired language code |
'en'
|
Returns:
Type | Description |
---|---|
URL of the transcript |
Raises:
Type | Description |
---|---|
TranscriptNotFoundError
|
If no transcript is available in the specified language |
DownloadError
|
If video info extraction fails |
Source code in src/tnh_scholar/video_processing/video_processing.py
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
|
get_video_download_path_yt(output_dir, url)
Extracts the video title using yt-dlp.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
url
|
str
|
The YouTube URL. |
required |
Returns:
Name | Type | Description |
---|---|---|
str |
Path
|
The title of the video. |
Source code in src/tnh_scholar/video_processing/video_processing.py
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
|
get_youtube_urls_from_csv(file_path)
Reads a CSV file containing YouTube URLs and titles, logs the titles, and returns a list of URLs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
file_path
|
Path
|
Path to the CSV file containing YouTube URLs and titles. |
required |
Returns:
Type | Description |
---|---|
List[str]
|
List[str]: List of YouTube URLs. |
Raises:
Type | Description |
---|---|
FileNotFoundError
|
If the file does not exist. |
ValueError
|
If the CSV file is improperly formatted. |
Source code in src/tnh_scholar/video_processing/video_processing.py
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
|
yt_transcribe
DEFAULT_CHUNK_DURATION_MS = 10 * 60 * 1000
module-attribute
DEFAULT_CHUNK_DURATION_S = 10 * 60
module-attribute
DEFAULT_OUTPUT_DIR = './video_transcriptions'
module-attribute
DEFAULT_PROMPT = 'Dharma, Deer Park, Thay, Thich Nhat Hanh, Bodhicitta, Bodhisattva, Mahayana'
module-attribute
EXPECTED_ENV = 'tnh-scholar'
module-attribute
args = parser.parse_args()
module-attribute
group = parser.add_mutually_exclusive_group(required=True)
module-attribute
logger = get_child_logger('yt_transcribe')
module-attribute
output_directory = Path(args.output_dir)
module-attribute
parser = argparse.ArgumentParser(description='Transcribe YouTube videos from a URL or a file containing URLs.')
module-attribute
url_file = Path(args.file)
module-attribute
video_urls = []
module-attribute
check_conda_env()
Source code in src/tnh_scholar/video_processing/yt_transcribe.py
31 32 33 34 35 36 37 38 39 |
|
transcribe_youtube_videos(urls, output_base_dir, max_chunk_duration=DEFAULT_CHUNK_DURATION_S, start=None, translate=False)
Full pipeline for transcribing a list of YouTube videos.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
urls
|
list[str]
|
List of YouTube video URLs. |
required |
output_base_dir
|
Path
|
Base directory for storing output. |
required |
max_chunk_duration
|
int
|
Maximum duration for audio chunks in seconds (default is 10 minutes). |
DEFAULT_CHUNK_DURATION_S
|
Source code in src/tnh_scholar/video_processing/yt_transcribe.py
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
|
xml_processing
FormattingError
Bases: Exception
Custom exception raised for formatting-related errors.
Source code in src/tnh_scholar/xml_processing/xml_processing.py
7 8 9 10 11 12 13 |
|
__init__(message='An error occurred due to invalid formatting.')
Source code in src/tnh_scholar/xml_processing/xml_processing.py
12 13 |
|
join_xml_data_to_doc(file_path, data, overwrite=False)
Joins a list of XML-tagged data with newlines, wraps it with
Parameters:
Name | Type | Description | Default |
---|---|---|---|
file_path
|
Path
|
Path to the output file. |
required |
data
|
List[str]
|
List of XML-tagged data strings. |
required |
overwrite
|
bool
|
Whether to overwrite the file if it exists. |
False
|
Raises:
Type | Description |
---|---|
FileExistsError
|
If the file exists and overwrite is False. |
ValueError
|
If the data list is empty. |
Example
join_xml_data_to_doc(Path("output.xml"), ["
Data "], overwrite=True)
Source code in src/tnh_scholar/xml_processing/xml_processing.py
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
|
remove_page_tags(text)
Removes
Parameters:
- text (str): The input text containing
Returns:
- str: The text with
Source code in src/tnh_scholar/xml_processing/xml_processing.py
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
|
save_pages_to_xml(output_xml_path, text_pages, overwrite=False)
Generates and saves an XML file containing text pages, with a
Parameters:
Name | Type | Description | Default |
---|---|---|---|
output_xml_path
|
Path
|
The Path object for the file where the XML file will be saved. |
required |
text_pages
|
List[str]
|
A list of strings, each representing the text content of a page. |
required |
overwrite
|
bool
|
If True, overwrites the file if it exists. Default is False. |
False
|
Returns:
Type | Description |
---|---|
None
|
None |
Raises:
Type | Description |
---|---|
ValueError
|
If the input list of text_pages is empty or contains invalid types. |
FileExistsError
|
If the file already exists and overwrite is False. |
PermissionError
|
If the file cannot be created due to insufficient permissions. |
OSError
|
For other file I/O-related errors. |
Source code in src/tnh_scholar/xml_processing/xml_processing.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
|
split_xml_on_pagebreaks(text, page_groups=None, keep_pagebreaks=True)
Splits an XML document into individual pages based on
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text
|
str
|
The XML document as a string. |
required |
page_groups
|
Optional[List[Tuple[int, int]]]
|
A list of tuples defining page ranges to group together. Each tuple is of the form (start_page, end_page), inclusive. |
None
|
keep_pagebreaks
|
bool
|
Whether to retain the |
True
|
Returns:
Type | Description |
---|---|
List[str]
|
List[str]: A list of page contents as strings, either split by pages or grouped by page_groups. |
Raises:
Type | Description |
---|---|
ValueError
|
If the expected preamble or |
Source code in src/tnh_scholar/xml_processing/xml_processing.py
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
|
extract_tags
extract_unique_tags(xml_file)
Extract all unique tags from an XML file using lxml.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
xml_file
|
str
|
Path to the XML file. |
required |
Returns:
Name | Type | Description |
---|---|---|
set |
A set of unique tags in the XML document. |
Source code in src/tnh_scholar/xml_processing/extract_tags.py
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
|
main()
Source code in src/tnh_scholar/xml_processing/extract_tags.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
|
xml_processing
FormattingError
Bases: Exception
Custom exception raised for formatting-related errors.
Source code in src/tnh_scholar/xml_processing/xml_processing.py
7 8 9 10 11 12 13 |
|
__init__(message='An error occurred due to invalid formatting.')
Source code in src/tnh_scholar/xml_processing/xml_processing.py
12 13 |
|
join_xml_data_to_doc(file_path, data, overwrite=False)
Joins a list of XML-tagged data with newlines, wraps it with
Parameters:
Name | Type | Description | Default |
---|---|---|---|
file_path
|
Path
|
Path to the output file. |
required |
data
|
List[str]
|
List of XML-tagged data strings. |
required |
overwrite
|
bool
|
Whether to overwrite the file if it exists. |
False
|
Raises:
Type | Description |
---|---|
FileExistsError
|
If the file exists and overwrite is False. |
ValueError
|
If the data list is empty. |
Example
join_xml_data_to_doc(Path("output.xml"), ["
Data "], overwrite=True)
Source code in src/tnh_scholar/xml_processing/xml_processing.py
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
|
remove_page_tags(text)
Removes
Parameters:
- text (str): The input text containing
Returns:
- str: The text with
Source code in src/tnh_scholar/xml_processing/xml_processing.py
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
|
save_pages_to_xml(output_xml_path, text_pages, overwrite=False)
Generates and saves an XML file containing text pages, with a
Parameters:
Name | Type | Description | Default |
---|---|---|---|
output_xml_path
|
Path
|
The Path object for the file where the XML file will be saved. |
required |
text_pages
|
List[str]
|
A list of strings, each representing the text content of a page. |
required |
overwrite
|
bool
|
If True, overwrites the file if it exists. Default is False. |
False
|
Returns:
Type | Description |
---|---|
None
|
None |
Raises:
Type | Description |
---|---|
ValueError
|
If the input list of text_pages is empty or contains invalid types. |
FileExistsError
|
If the file already exists and overwrite is False. |
PermissionError
|
If the file cannot be created due to insufficient permissions. |
OSError
|
For other file I/O-related errors. |
Source code in src/tnh_scholar/xml_processing/xml_processing.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
|
split_xml_on_pagebreaks(text, page_groups=None, keep_pagebreaks=True)
Splits an XML document into individual pages based on
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text
|
str
|
The XML document as a string. |
required |
page_groups
|
Optional[List[Tuple[int, int]]]
|
A list of tuples defining page ranges to group together. Each tuple is of the form (start_page, end_page), inclusive. |
None
|
keep_pagebreaks
|
bool
|
Whether to retain the |
True
|
Returns:
Type | Description |
---|---|
List[str]
|
List[str]: A list of page contents as strings, either split by pages or grouped by page_groups. |
Raises:
Type | Description |
---|---|
ValueError
|
If the expected preamble or |
Source code in src/tnh_scholar/xml_processing/xml_processing.py
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
|