Fine Tuning Strategy¶
Strategy outline and development plan for fine-tuning foundation models on Thich Nhat Hanh translations.
Initial Prompt¶
hello claude,
I'd like you to tell me how you would go about fine-tuning an openai gpt-4o model or an anthropic model to improve translations of thich nhat hanh's works between the languages he taught in: Vietnamese, English, French. This is a project initiated by the plum village community with full access to collected works and permission to develop this for internal use only (for translation purposes). It would be of secondary benefit if the model also learned something about thay's teachings and could reflect, answer questions and so on.
give a high level design strategy and then a detailed plan, with initial skeleton development in python using stubs for functions and classes. be as thorough and complete as possible. Consider an arc of development from prototyping and testing phase through initial development to a final stage of full development.
Outputs are
1) design plan and overview with considerations. 2) process sequence from prototyping and testing through full implementation 3) initial skeleton structures: including file structure blueprint with all major modules, and all major classes and high level functions as stubs. For minor modules these can simply be listed in the file structure blueprint.
Translation Project Structure¶
# Project Structure
tnh_translation/
│
├── pyproject.toml
├── setup.py
├── README.md
├── requirements.txt
│
├── config/
│ ├── model_config.yaml
│ ├── training_config.yaml
│ └── evaluation_config.yaml
│
├── notebooks/
│ ├── data_exploration.ipynb
│ ├── model_experimentation.ipynb
│ └── evaluation_analysis.ipynb
│
├── src/
│ ├── data/
│ │ ├── __init__.py
│ │ ├── corpus.py
│ │ ├── preprocessing.py
│ │ ├── alignment.py
│ │ └── validation.py
│ │
│ ├── models/
│ │ ├── __init__.py
│ │ ├── base_model.py
│ │ ├── fine_tuning.py
│ │ └── serving.py
│ │
│ ├── training/
│ │ ├── __init__.py
│ │ ├── trainer.py
│ │ ├── callbacks.py
│ │ └── optimization.py
│ │
│ ├── evaluation/
│ │ ├── __init__.py
│ │ ├── metrics.py
│ │ ├── analysis.py
│ │ └── visualization.py
│ │
│ └── utils/
│ ├── __init__.py
│ ├── logging.py
│ ├── config.py
│ └── helpers.py
│
├── tests/
│ ├── test_data/
│ ├── test_models/
│ ├── test_training/
│ └── test_evaluation/
│
└── scripts/
├── prepare_data.py
├── train_model.py
└── evaluate_model.py
Core Implementation Classes¶
# src/data/corpus.py
from pathlib import Path
from typing import Dict, List, Optional, Union
from dataclasses import dataclass
import logging
logger = logging.getLogger(__name__)
@dataclass
class TextUnit:
"""Represents a single unit of text (paragraph, sentence, etc.) in multiple languages"""
id: str
content: Dict[str, str] # Language code -> text
metadata: Dict[str, any]
source_file: Path
alignment_score: Optional[float] = None
class ParallelCorpus:
"""Manages multilingual parallel text corpus for training"""
def __init__(self, base_path: Path):
self.base_path = Path(base_path)
self.texts: List[TextUnit] = []
self.language_pairs: List[tuple] = []
def load_texts(self, source_paths: Dict[str, Path]):
"""Load texts from multiple sources with language mapping"""
pass
def align_texts(self, method: str = "sentence"):
"""Align texts across languages using specified method"""
pass
def validate_alignment(self, threshold: float = 0.8):
"""Validate alignment quality"""
pass
def export_training_data(self, output_path: Path):
"""Export aligned texts in training format"""
pass
# src/data/preprocessing.py
class TextPreprocessor:
"""Handles text preprocessing for training data"""
def __init__(self, config: Dict):
self.config = config
def clean_text(self, text: str) -> str:
"""Clean and normalize text"""
pass
def tokenize(self, text: str) -> List[str]:
"""Tokenize text using appropriate method"""
pass
def handle_special_terms(self, text: str) -> str:
"""Process domain-specific terminology"""
pass
# src/models/base_model.py
from abc import ABC, abstractmethod
from typing import Optional, Dict, Any
class BaseModel(ABC):
"""Abstract base class for model implementations"""
def __init__(self, model_name: str, config: Dict[str, Any]):
self.model_name = model_name
self.config = config
@abstractmethod
def load_model(self):
"""Load pre-trained model"""
pass
@abstractmethod
def prepare_inputs(self, texts: List[str]) -> Dict:
"""Prepare inputs for model"""
pass
@abstractmethod
def train_step(self, batch: Dict) -> Dict:
"""Perform single training step"""
pass
class GPT4Model(BaseModel):
"""GPT-4 model implementation"""
def __init__(self, config: Dict[str, Any]):
super().__init__("gpt-4", config)
def load_model(self):
"""Load GPT-4 model"""
pass
def prepare_inputs(self, texts: List[str]) -> Dict:
"""Prepare inputs for GPT-4"""
pass
# src/training/trainer.py
class ModelTrainer:
"""Handles model training and fine-tuning process"""
def __init__(
self,
model: BaseModel,
train_data: ParallelCorpus,
val_data: ParallelCorpus,
config: Dict[str, Any]
):
self.model = model
self.train_data = train_data
self.val_data = val_data
self.config = config
def train(self):
"""Execute training loop"""
pass
def validate(self):
"""Run validation"""
pass
def save_checkpoint(self):
"""Save model checkpoint"""
pass
# src/evaluation/metrics.py
class TranslationEvaluator:
"""Evaluates translation quality using multiple metrics"""
def __init__(self, metrics: List[str]):
self.metrics = metrics
def evaluate(
self,
predictions: List[str],
references: List[str]
) -> Dict[str, float]:
"""Calculate evaluation metrics"""
pass
def analyze_errors(
self,
predictions: List[str],
references: List[str]
) -> Dict[str, Any]:
"""Perform error analysis"""
pass
# src/evaluation/analysis.py
class QualityAnalyzer:
"""Analyzes translation quality and provides detailed feedback"""
def __init__(self, config: Dict[str, Any]):
self.config = config
def analyze_terminology(self, text: str) -> Dict[str, Any]:
"""Analyze terminology usage"""
pass
def check_doctrinal_accuracy(self, text: str) -> Dict[str, Any]:
"""Verify doctrinal accuracy"""
pass
def generate_report(self, analysis_results: Dict[str, Any]) -> str:
"""Generate detailed analysis report"""
pass
# Configuration and setup
def setup_logging():
"""Configure logging for the project"""
pass
def load_config(config_path: Path) -> Dict[str, Any]:
"""Load configuration from YAML file"""
pass
def initialize_project(config: Dict[str, Any]):
"""Initialize project with configuration"""
pass
Training Configuration¶
# Model Configuration
model:
name: "gpt-4"
version: "latest"
max_sequence_length: 2048
batch_size: 16
learning_rate: 2e-5
warmup_steps: 1000
max_steps: 50000
save_steps: 1000
eval_steps: 500
# Data Configuration
data:
languages:
- "vi"
- "en"
- "fr"
text_units:
- "sentence"
- "paragraph"
alignment:
method: "hybrid" # sentence + semantic
min_score: 0.8
preprocessing:
lowercase: false
normalize_unicode: true
special_tokens:
- "<<dharma>>"
- "<<sangha>>"
- "<<buddha>>"
# Training Configuration
training:
objectives:
- name: "translation"
weight: 1.0
- name: "understanding"
weight: 0.5
optimization:
optimizer: "adamw"
weight_decay: 0.01
gradient_clip: 1.0
scheduling:
type: "linear"
num_warmup_steps: 1000
validation:
frequency: 1000
metrics:
- "bleu"
- "ter"
- "comet"
- "dharma_accuracy"
# Evaluation Configuration
evaluation:
metrics:
- name: "bleu"
weight: 0.3
- name: "ter"
weight: 0.2
- name: "comet"
weight: 0.3
- name: "dharma_accuracy"
weight: 0.2
human_evaluation:
sangha_review: true
expert_review: true
community_feedback: true
terminology:
check_consistency: true
verify_usage: true
maintain_register: true
# Infrastructure Configuration
infrastructure:
compute:
device: "cuda"
precision: "mixed"
distributed: true
logging:
level: "INFO"
save_path: "logs/"
monitoring:
tensorboard: true
wandb: true
checkpointing:
save_best: true
save_last: true
max_checkpoints: 5
High Level Implementation Plan for Fine-Tuning¶
1. Foundation Phase (2-3 weeks)¶
- Core data structures & basic pipeline
- Minimal preprocessing
- Simple model integration
- Basic evaluation
2. Rapid Prototype Phase (4-6 weeks)¶
- End-to-end workflow
- Basic fine-tuning capability
- Simple translation testing
- Initial quality metrics
3. Enhancement Phase (Ongoing)¶
- Advanced features integration
- Quality improvements
- Specialized capabilities
- Production readiness
Intermediate Level Plan¶
1. Foundation Phase¶
a. Data Pipeline (Week 1)¶
- Basic corpus loader
- Simple text alignment
- Minimal preprocessing
- Validation scaffolding
b. Model Integration (Week 2)¶
- OpenAI API integration
- Basic prompt engineering
- Simple fine-tuning setup
- Test harness creation
c. Basic Infrastructure (Week 3)¶
- Configuration management
- Logging setup
- Experiment tracking
- Initial testing framework
2. Rapid Prototype Phase¶
a. Core Workflow (Weeks 4-5)¶
- Data loading pipeline
- Training loop implementation
- Basic evaluation metrics
- Result logging
b. Initial Testing (Weeks 6-7)¶
- Small-scale fine-tuning
- Translation testing
- Quality assessment
- Performance analysis
c. Pipeline Integration (Weeks 8-9)¶
- Workflow automation
- Error handling
- Basic monitoring
- Documentation
3. Enhancement Phase¶
a. Quality Improvements¶
- Advanced preprocessing
- Better alignment methods
- Enhanced validation
- Extended metrics
b. Feature Integration¶
- Terminology management
- Review system
- Quality analysis
- Advanced monitoring
Detailed Implementation Plan¶
1. Foundation Phase¶
Week 1: Data Pipeline¶
Day 1-2: Corpus Management
- Implement basic ParallelCorpus class
- Create TextUnit data structure
- Build simple file loading
- Set up basic validation
Day 3-4: Text Alignment
- Implement sentence splitting
- Basic alignment matching
- Simple alignment scoring
- Basic quality checks
Day 5: Preprocessing
- Text cleaning functions
- Basic tokenization
- Language detection
- Format standardization
Week 2: Model Integration¶
Day 1-2: API Setup
- OpenAI client setup
- Authentication handling
- Basic API wrapper
- Error handling
Day 3-4: Fine-tuning Basics
- Data formatting
- Basic training loop
- Simple inference
- Result handling
Day 5: Test Framework
- Unit test setup
- Integration tests
- Performance metrics
- Basic logging
Week 3: Infrastructure¶
Day 1-2: Configuration
- YAML config setup
- Environment management
- Parameter handling
- Version control
Day 3-4: Logging & Monitoring
- Logging implementation
- Basic metrics tracking
- Error reporting
- Status monitoring
Day 5: Integration
- Pipeline assembly
- Basic workflow
- Documentation
- Initial testing
2. Rapid Prototype Phase¶
Weeks 4-5: Core Workflow¶
Days 1-3: Pipeline Integration
- Data loading workflow
- Preprocessing pipeline
- Model integration
- Basic evaluation
Days 4-7: Training Implementation
- Fine-tuning loop
- Batch processing
- Checkpointing
- Initial validation
Days 8-10: Quality Control
- Basic metrics
- Result validation
- Error analysis
- Performance tracking
Weeks 6-7: Testing & Refinement¶
Days 1-5: Initial Testing
- Small dataset testing
- Performance evaluation
- Error analysis
- Pipeline validation
Days 6-10: Refinement
- Workflow optimization
- Error handling
- Performance tuning
- Documentation
Critical Implementation Priorities¶
1. Data Management¶
# Minimal ParallelCorpus implementation
class ParallelCorpus:
def load_texts(self):
# Priority 1: Basic file loading
# Priority 2: Error handling
# Priority 3: Metadata handling
pass
def align_texts(self):
# Priority 1: Simple matching
# Priority 2: Quality scoring
# Priority 3: Advanced alignment
pass
2. Model Integration¶
# Basic model wrapper
class ModelWrapper:
def prepare_fine_tuning(self):
# Priority 1: Data formatting
# Priority 2: Parameter setup
# Priority 3: Advanced options
pass
def train(self):
# Priority 1: Basic training loop
# Priority 2: Monitoring
# Priority 3: Optimization
pass
3. Evaluation Framework¶
# Core evaluation
class Evaluator:
def evaluate_translation(self):
# Priority 1: Basic metrics
# Priority 2: Quality analysis
# Priority 3: Advanced metrics
pass
def generate_report(self):
# Priority 1: Basic statistics
# Priority 2: Detailed analysis
# Priority 3: Advanced insights
pass
Extension Points¶
1. Data Pipeline¶
- Advanced text alignment
- Enhanced preprocessing
- Quality validation
- Metadata handling
2. Model Development¶
- Advanced fine-tuning
- Multiple model support
- Hyperparameter optimization
- Model ensembling
3. Evaluation¶
- Custom metrics
- Automated analysis
- Review integration
- Quality assurance
Note: This implementation plan is intended to provide a path to a working prototype while maintaining extensibility for future enhancements.